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Abstract—With the growing popularity of Social Networking
Services (SNSs), increasing amounts of sensitive information are
stored online and linked to SNS accounts. The obvious value
of SNS accounts gives rise to the identity fraud problem—
unauthorized, stealthy use of SNS accounts. For example, anxious
parents may use their children’s SNS accounts to spy on the
children’s social interaction; or husbands/wives may check their
spouses’ SNS accounts if they suspect infidelity. Stealthy identity
fraud could happen to anyone and seriously invade the privacy of
account owners. However, there is no known defense against such
behavior when an attacker, possibly an acquaintance of the vic-
tim, gets access to the victim’s computing devices. In this paper,
we propose to extend the use of continuous authentication to detect
the in situ identity fraud incidents, which occurs when the attack-
ers use the same accounts, the same devices, and IP addresses as the
victims. Using Facebook as a case study, we show that it is pos-
sible to detect such incidents by analyzing SNS users’ browsing
behavior. Our experiment results demonstrate that the approach
can achieve higher than 80% detection accuracy within 2 min, and
over 90% after 7 min of observation time.

Index Terms—Authentication, continuous authentication, data
privacy, fraud, information security, internet privacy, social com-
puting, social security.

I. INTRODUCTION

M ANY PEOPLE use Social Networking Services
(SNSs) daily, and link a lot of personal and sen-

sitive information to their SNS accounts. The information
generally includes friend lists, feeds from friends, nonpublic
posts/photos, private interactions with acquaintances (such as
chats and messages), and purchased apps/items. The obvious
value of such information makes SNS accounts one of the most
targeted online resources by malicious attackers. SNS sites have
made significant efforts to prevent identity fraud and protect
users’ privacy. For example, Facebook records the regular IP
addresses and devices used by each account. If an unusual IP
address or device is used to log in to an account, the user may
be required to answer some secret questions [1] or enter a secu-
rity code sent to the account owner’s mobile device [2] in order
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to verify if the login is authentic. Facebook also allows users to
report account theft manually if they suspect that their accounts
have been compromised.

Despite all the efforts to prevent identity fraud, user pri-
vacy can be compromised by another form of breach called in
situ identity fraud—unauthorized, stealthy use of SNS accounts
by attackers using the same device and network connection
as the account owners. Different from other forms of iden-
tify fraud, anyone can perform in situ identity fraud without
any technology hacks. For example, anxious parents may use
their children’s SNS accounts to spy on the children’s social
interactions; or husbands/wives may check their spouses’ SNS
accounts if they suspect infidelity. Similarly, colleagues, super-
visors, friends, and siblings may use acquaintances’ accounts
for different reasons when there is a chance.

In situ identity fraud is widespread for a number of reasons.
First, people tend to choose “YES” when the browsers on their
own computers ask if they want to save their (SNS) passwords
for automatic logins in the future. This is especially true when
people use their mobile devices because inputting passwords
is inconvenient [3], [4]. Mobile devices make in situ identity
fraud easy in other ways, as they can be physically accessed
by acquaintances or strangers [5], and most of them are not
locked by PINs [6]. In addition, many SNS sites use cookies to
avoid the need for account authentication within a short period
of time. For example, once logged into Facebook, a user does
not need to log in again for up to 60 days [7]. Given the above
loopholes, if someone (usually an acquaintance) gets to access
an SNS user’s computer or mobile device, it is unlikely that
he will need a technical background to obtain the information
associated with the SNS account.

It is very difficult to detect in situ identity fraud of SNS
accounts by traditional methods because attackers use the same
IP addresses/devices and provide the same credentials to access
the owners’ accounts. Moreover, because users do not normally
check the login logs, they cannot detect and report such inci-
dents unless the attackers leave clear evidence. Thus, there is
no defense against in situ identity fraud.

A. Contributions

In this paper, we investigate the in situ identity fraud problem
on SNSs, and propose a scheme that analyzes users’ brows-
ing behavior to detect such incidents. Using Facebook as a case
study, we show that it is possible to detect this type of attacks on
SNS sites by analyzing users’ browsing behavior, such as clicks
on newsfeeds,1 friend lists, profiles, likes, messages, photos/

1A user’s Facebook newsfeed is located in the middle column of his
Facebook page. It is a constantly updated list that summarizes the status of
people the user follows on Facebook.
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videos, and comments. The results demonstrate that the pro-
posed scheme can achieve more than 80% accuracy with a high
degree of confidence within 2 min, and over 90% after 7 min of
observation time.

B. Deployment

The proposed detection approach is designed to run on SNS
servers and act as the first line of defense against in situ iden-
tity fraud. The deployment is straightforward because an SNS
server simply collects information about the behavior of an
account’s session and feeds it into a detection model in real
time. The model determines whether the current user is authen-
tic. If there is any suspicion about the user, the SNS server
can 1) apply more sophisticated analysis/monitoring techniques
and/or 2) challenge the current user immediately by asking
secret questions or via a second channel, such as mobile phone
authentication [2]. Since this is the first line of defense, the
detection model does not need to be 100% accurate. Reasonable
detection power is sufficient and the key issue is to identify
account fraud incidents as early as possible. Moreover, the pro-
posed method is not limited to a specific SNS site or a certain
learning technique because it is based on a standard supervised
learning framework, such as the smooth SVM [8] adopted in
this work. Thus, service operators like Facebook may choose
the asymmetric SVM [9] or any other learning framework if
they wish to further fine tune the identification performance.

C. Implications

We believe that the in situ identity fraud problem, which
has not been widely studied, will become more critical in the
future as people store increasing amounts of sensitive infor-
mation online. In fact, the problem may also occur in email
services such as Gmail and Outlook; time management services
such as Google Calendar and Remember The Milk; and photo
album services such as Instagram. Asking users to authenticate
themselves repeatedly during the use of the services is infeasi-
ble in practice due to usability issues. Thus, implicit detection
seems to be a reasonable way to prevent attacks of this kind.

This paper is organized as follows. Section II provides a
review of related works; and Section III explains the rationale
behind the proposed method, which exploits users’ browsing
behavior to detect in situ identity fraud. In Section IV, we
discuss the user study based on Facebook and analyze users’
behavior. We describe our detection methodology in Section V,
evaluate the scheme’s performance in Section VI, and con-
sider security issues in Section VII. Section VIII contains some
concluding remarks.

II. RELATED WORK

In this section, we review existing studies on the privacy
issues related to SNSs and intrusion/misuse detection.

A. SNS Privacy

A great deal of effort has been devoted to protecting users’
privacy, which is always a concern for SNS users. He et al.

[10], Zheleva and Getoor [11], and Tang et al. [12] observed a
privacy loophole that allows attackers to infer private informa-
tion about a user (such as sexual orientation) from his public
SNS records/activities. In [13], Bilge et al. studied the fea-
sibility of social engineering attacks over SNS, whereas the
authors in [14] proposed a detection scheme against identity
clone attacks that aim at creating fake identifies for malicious
purposes. Felt and Evans [15] and Wishart et al. [16] devel-
oped methods that prevent privacy leaks from SNS developers’
APIs and the software built based on them. Mahmood and
Desmedt [17] identified on a type of privacy attack called fre-
quent account deactivation. Meanwhile, in the SNS industry,
Facebook uses a number of measures to protect users’ privacy.
For example, it provides an official page [18] to educate users
about the recommended privacy and security settings, and it
records the IP addresses, web browsers, and devices used by
each account [19]. If an attempt is made to log into an account
with unseen IP addresses or devices, Facebook challenges the
user by asking secret questions [1] or via mobile phone authen-
tication [2]. Users can also report suspicious identity fraud
incidents manually.

However, none of the above measures can protect users’ pri-
vacy from in situ identity fraud, i.e., if the attackers use the
identical devices as the victims. Passwords, credentials, and
cookies are usually stored in users’ devices to avoid the need
for repeated account authentication [3], [4], [7]. Thus, attack-
ers who have physical access to the devices can easily bypass
existing detection schemes and obtain sensitive information in
users’ SNS accounts.

B. Anomaly Detection and Misuse Detection

To our knowledge, the research on misuse detection can be
traced back to Lunt et al. [20]. In [20], the authors described
a system that monitors account logins, logouts, program exe-
cutions, system calls, network activity, and so on in order to
detect the misuse of an account by others. Similar strategies
have been applied to the misuse of general computer systems
[21]–[23], information retrieval systems [24], database systems
[25], [26], transaction systems [27], email accounts [28], and
so on. Furthermore, to enable real-time detection of misuse,
continuous authentication (also known as reauthentication) [29]
was commonly adopted to analyzes the activity of a system or
a user to continuously verify the genuineness of the usage. This
approach analyzes activities such as keyboard typing behavior
[29], mouse movements [30], touch gestures on mobile devices
[31], facial characteristics (if a webcam is available) [32], or
any other soft biometric traits [33], [34].

The research done by Egele et al. [35] is probably the most
similar to this paper. In the paper, the authors proposed a
scheme to detect compromised accounts on online social net-
works and used Twitter to validate their approach. The key
differences between [35] and the current paper are as follows:
1) the former requires relatively long-term observations, say, a
few days or even longer time and 2) the compromised accounts
are often used to post advertisement messages, whereas in
our scenario (i.e., in-situ identity fraud), the stalker normally
browse information without leaving trails. Thus, [35] cannot be
applied to solve the in situ identity fraud problem.
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To the best of our knowledge, this paper is the first to address
the in situ identity fraud problem, a special case of account
misuse, on SNS sites. As described in Section I, the grow-
ing popularity of SNSs and the increasing amounts of sensitive
information online suggest the immediate demand for identity
fraud detection for SNSs. Earlier proposals on account misuse
detection cannot be applied to this scenario because 1) they
are either based on system-level activities such as processes
and network traffic, which are not informative indicators of
in situ identity fraud as the same device and network connec-
tions are used or 2) they are based on domain-specific activities
such as database queries and information search queries, which
are clearly inapplicable to the context of SNS user behav-
ior. Moreover, in many account misuse detection schemes, a
detection model is required for each user. The cost may be
prohibitive for SNS servers because an SNS site may have
millions of users.2 The scheme proposed in this paper only
analyzes the Web browsing behavior of three predefined user
groups. The detection model is universal, i.e., it can be applied
to all users, and it incurs low data collection and computa-
tion overheads. Another advantage is that the scheme can be
applied to a new account whose associated behavior is not yet
clear. Note that the scheme is not a replacement for existing
continuous authentication approaches. Rather, it can serve a
low-cost filter for suspicious accounts, so that servers can apply
more sophisticated, personalized analytical techniques when
necessary.

III. RATIONALE BEHIND OUR APPROACH

SNSs are not simply places for people to maintain their friend
lists. They are more like platforms where people can engage
various social activities, such as posting details of their own
status, reading other users’ comments on the news, chatting,
and meeting new people. Some studies [36], [37] suggest that
there is no typical user behavior pattern on a complicated, open
platform like Facebook, as every user seems to behave differ-
ently on an SNS. For example, some people use SNS to satisfy
their desire for self-promotion, so they spend most of their time
sharing the latest information about their status and posting the
latest photos/events. On the other hand, some people may want
to make new friends online, chat with old friends, or spend time
discovering new social games, while some may want to stalk
certain other users.

Despite that users are driven by different personal intentions
when they use SNS, we posit that SNS users would behave quite
differently when they browse SNS information of others rather
than those of their own, and we conjecture the resulting behav-
ioral difference would be significant regardless of individual
diversities. In other words, personal differences does certainly
exist, but we consider that SNS users would exhibit relatively
more or less similarly when they have opportunities to peep SNS
information of others, such as the newsfeed of their friends on
Facebook.

In the context of in situ identity fraud, an SNS user can be
classified as one of the following roles: 1) an owner, which

2For example, Facebook had more than one billion active users in December
2012.

means the person uses his own account; 2) an acquaintance (as
a stalker), who uses the account of someone he knows; or 3) a
stranger (as a stalker), who uses the account of a person he does
not know. Intuitively, when owners check their Facebook news-
feeds, they should focus more on the latest information posted
by friends and use the “Like” or “Share” function to interact
with others. By contrast, when a stalker (either an acquaintance
or a stranger) browses a newsfeed, he may be more interested
in historical information about the stalker and/or the account
holder. Also, the stalker generally do not interact with others to
avoid discovery by the account holder about the identity fraud.
In summary, we believe that users’ behavior varies in different
roles for the following reasons.

1) The way people treat familiar information (and informa-
tion from close friends) would be different than the way
they treat unfamiliar information.

2) People in different roles may have different intentions.
3) To avoid detection by the account owners, stalkers are

supposed not to make any interaction with others. Also,
they may have limited time to commit in-situ identity
fraud so their browsing behavior would be even more
different.

We define the above differences in SNS users’ browsing
behavior as role-driven behavioral diversity, which serves the
rationale behind the proposed detection scheme. In the next
section, using a dataset collected on Facebook, we demonstrate
the significance of the role-driven behavioral diversity. Then, in
Section V, we explain how the detection scheme exploits this
property to distinguish between account owners and stalkers.

IV. BROWSING BEHAVIOR ON FACEBOOK

As mentioned earlier, we use Facebook as a case study of
SNS users’ role-driven behavior.

A. Data Collection

To capture the role-driven behavioral diversity of users, we
asked a number of Facebook account owners to participate
in experiments that involved browsing Facebook newsfeeds in
different roles. Specifically, each subject browsed 1) his own
newsfeed; 2) the newsfeed of a real-world acquaintance; and
3) the newsfeed of a stranger.

For the experiments, we hired pairs of subjects from an
Internet community with more than one million members,
where each pair satisfied at least one of the following relation-
ship criteria: friends, family members, colleagues, classmates,
or couples. The subjects were paid 10 USD each and gave per-
mission for their actions (e.g., clicks, typing, and page views) to
be recorded when they browsed newsfeeds. In addition, the sub-
jects were only hired if they have been active Facebook users
with over 50 friends and regularly using Facebook for more
than 4 h per week.

Each experiment comprised three rounds. In each round,
a subject was asked to browse the newsfeed of his account,
a friend’s account, or a stranger’s account for 30 min. The
subjects and accounts were paired randomly, but each subject
was guaranteed to play all three roles in the three rounds, as
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Fig. 1. (A,B) and (C,D) are pairs of acquaintances. Each experiment com-
prises three rounds. In each round, each subject is assigned an account at
random. In the three rounds, a subject is guaranteed to browse his own account,
an acquaintance’s account, and a stranger’s account in a randomized order.

TABLE I
SUMMARY OF THE EXPERIMENTS AND THE RAW DATASET

shown in Fig. 1. During each round, the subjects could perform
any action they wished (e.g., browsing photos or leaving com-
ments), but they could not engage in sabotage activities (e.g.,
changing an account’s password). Actions that followed exter-
nal links (such as videos) were allowed, but the subjects were
instructed not to browse the external content for longer than
1 min each time.

To capture the subjects’ activities on Facebook, we
used Fiddler, a Web debugging proxy, to monitor all the
HTTP/HTTPS GET/POST requests issued by the Web browser.
By parsing the HTTP/HTTPS request logs, we were able to
capture every action performed by a user (as described later).
Table I summarizes the experiments and the raw dataset we col-
lected. Although our administrators monitored the experiments,
some subjects did not follow the instruction to browse the spec-
ified Facebook newsfeeds. Out of 311 sessions, we removed 33
“noisy sessions” of subjects who obviously did focus on the
newsfeeds, i.e., sessions with an idle or inactive period longer
than 5 min. As a result, our 112 subjects (56 pairs of acquain-
tances) totally performed 278 Facebook browsing sessions. The
trace contains 9302 min (155 h) and approximately 27 000
browsing actions.

TABLE II
18 COMMON USER ACTIONS WE COLLECTED FROM THE EXPERIMENT

ON FACEBOOK

TABLE III
EXAMPLES OF USER ACTIONS COLLECTED FROM FACEBOOK

B. Defining Features

We identified 18 common user actions on Facebook, as
shown in Table II. Each of the actions can be associated to two
attributes: 1) account-relevant action, which refers to an action
used to interact with another person (account) and 2) page-
switching action, which causes the browser to load another
Facebook page. By parsing the HTTP/HTTPS request logs, we
obtained a chronological list of actions for each session, as
shown by the examples in Table III. Each record on the list con-
tains the name of the action, the occurrence time stamp, and the
target person the user interacted with if the action was inter-
active. Based on the account owner’s profile and friend list,
we annotated the target person as either the “account owner,”
a “friend,” or a “nonfriend.”

Next, we define a number of features and extract their val-
ues for each session we collected in order to characterize users’
browsing behavior and apply machine learning algorithms for
predicting in situ identity fraud incidents. Even if there is a
perfect learning algorithm, without features that encode infor-
mation about who is initiating a session, the algorithm will not
be able to distinguish between account owners and stalkers.
How to define discriminative features is a key issue in this work,
and it is usually challenging because it requires insight, domain
knowledge, creativity, and even “black arts” [38].

We interviewed heavy users of Facebook about their regu-
lar usage patterns and the ways they discovered and explored
interesting information. Based on the results, we defined 139
features. All the features of a particular session can be extracted
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Fig. 2. Evidence of role-driven behavioral diversity.

from the session’s action list (see Table III). We summarize the
features as follows.

1) f.<action>: The frequency of a certain action (per
minute), where <action> refers to an action defined
in Table II. Meanwhile, f.acts denotes the frequency of
all the user actions by dividing the number of actions
by the session duration. In addition, we also define
f.acts.excluding.page.expand to represent the fre-
quency of all but the “expand page” action.3 This feature
allows us to determine how fast a user perform actions in
addition to browsing information.

2) f.<target_type>.<action>: The frequency of a
certain action that targets a certain user type. The
<action> is an account-relevant action in Table II, and
<target_type> can be self (if the target person is the
account owner), friend (if the target person is a friend of
the account owner), or nonfriend (if the target person is
not a friend).

3) b.<xxx>: The binary version of all the above features;
i.e., b.<xxx>=1 iff f.<xxx> is greater than 0. For
example, b.<action> indicates if a certain action occurs
during the session.

4) f.act.<target_type>: The frequency of all the
account-relevant actions performed in relation to a certain
target user type.

3In Facebook, some pages (e.g., newsfeeds and walls) and page items
(e.g., comments, notifications lists, etc.) can be expanded to show earlier/more
information via an “expand page” action.

5) ts.page.<page_type>: The time the session user
spends on a certain page after performing a page-
switching action. The <page_type> can be feed (the
account owner’s newsfeed), msg (the account owner’s
message box), self (pages, such as the wall/friend
list/note/photos, of the account owner), friend (pages
of friends), nonfriend (pages of nonfriends), or public
(pages belonging to fans or groups).

6) f.act.page.<page_type>: The frequency of all the
actions the users perform on a certain page type.
We also define f.act.expand.page.<page_type> and
f.act.non.expand.page.<page_type> to take account
of the frequency of the “expand page” action and that of
the rest actions on a certain page type, respectively.

7) n.act.person: The number of target people the user
interacts with (via an account-relevant action) during the
session.

8) n.act.person.<statistics>: The statistics of the
number of visits made to different users’ pages dur-
ing the session. The <statistics> include the
mean, std_dev, median, and maximum. For example, if
the user visits the account owner’s pages once, friend A’s
pages thrice, friend B’s pages once, and nonfriend C’s
pages twice, we obtain mean = 1.75, std_dev = 0.96,
median = 1.5, and maximum = 3. We capture these fea-
tures because we want to determine if a user focuses on
specific person(s).

After extracting the features for each session, we obtain a
dataset for further analysis. Each session is labeled as either
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“owner,” “acquaintance,” or “stranger,” depending on the user’s
role during the session in the experiment.

C. Role-Driven Behavioral Diversity

To verify the existence of role-driven behavioral diversity
between account owners, acquaintances, and strangers, we ana-
lyze users’ behavior patterns in different roles. Our observations
are summarized below.

1) General Diversity: As shown in Fig. 2(a), all the ses-
sions for the three user roles have similar values in f.acts.
However, in f.acts.excluding.page.expand [Fig. 2(b)], the
sessions controlled by account owners have the highest val-
ues followed by those of acquaintances, and sessions con-
trolled by strangers have the lowest values. This implies that
acquaintances and strangers usually pay more attention to read-
ing/searching for interesting information and care more about
historical information, as the content hidden by expandable
pages/items is older in terms of posting time.

The sessions used by acquaintances/strangers also yield
much lower values in f.act_add_comment [Fig. 2(c)] and
f.act_like [Fig. 2(d)] than those controlled by account
owners. The reason is obvious: normally, acquaintances and
strangers do not want to leave clues about their prying behavior.

2) What Stalkers Do Not Care About: Although acquain-
tances/ strangers expand pages more frequently [Fig. 2(b)], they
do not expand the comment lists as often as account owners.
This is because they may not know the people who left the
comments, and therefore show less interest in them unless the
comments are relevant to people they know. For similar reasons,
acquaintances/strangers show less interest in the pages of fans
and groups [Fig. 2(e)] and people who like a post [Fig. 2(f)].
They also spend relatively less time on the accounts’ newsfeeds
[Fig. 2(g)] but spend more time in checking the account owners’
personal wall and photos [Fig. 2(l) and (m)].

3) What Acquainted Stalkers Care About: Among the three
roles, acquaintances pay the most attention to the friend lists of
the account owners [Fig. 2(i)]. This is because an acquaintance
may be interested to know the account owner’s social connec-
tions, especially people who are not friends of the acquainted
stalker. For similar reasons, acquaintances generally show the
most interest in the message boxes [Fig. 2(j)] and profile cards4

of the accounts’ friends [Fig. 2(k)].
4) What Stranger Stalkers Care About: Interestingly,

strangers view account owners’ profiles [Fig. 2(l)] and pho-
tos [Fig. 2(m)] more often than the account owners and their
friends. The reason is that strangers do not know the account
owners, so they are usually curious about the owners and how
they look like. Stranger stalkers’ actions are also less relevant to
account owners’ social relationships, as shown by the fact that
they are more interested in nonfriends [Fig. 2(n)] and external
links [Fig. 2(o)].

We believe that the above observations manifest the promi-
nence of role-driven behavioral diversity. Next, we show how
this diversity can be exploited to build a low-cost model for
detecting in situ identity fraud on social network services.

4A profile card on Facebook provides a badge-like summarization of an
account’s basic information.

Fig. 3. Flowchart of the detection scheme.

V. DETECTION SCHEME

In this section, we describe the scheme for detecting in situ
identity fraud on SNS sites. Recall that each session in our
dataset is labeled as either “account owner,” “acquaintance,”
or “stranger.” Because our goal is to distinguish stalkers from
account owners, in the following, we replace the “acquain-
tance” and “stranger” labels with “stalker.”

Fig. 3 provides an overview of the detection scheme. After
a user logs in with a stored credential or existing authentica-
tion cookies (Step 1), the SNS server monitors and records the
user’s actions for an observation period of n minutes, where n
is a configurable parameter (Step 2). At the end of the obser-
vation period, the server extracts the features of the monitored
session based on the recorded actions (Step 3). It then feeds
the session features, as defined in Section IV-B, into a detec-
tion model (Step 4), which determines if the session owner is
suspicious by predicting the label of the session (Step 5). If the
predicted label is “stalker,” the SNS server can challenge the
user by asking secret questions or via a second channel, such as
the account owner’s mobile phone (Step 6). Alternatively, the
server can implement a more sophisticated, but costly, detection
scheme.

For the server, the runtime cost of the scheme is low because
it exploits the role-driven behavioral diversity property. As a
result, only one detection model is needed for all SNS users.
Note that although we utilize a two-class detection model to
distinguish stalkers from account owners, the scheme can be
easily extended to identify account owners, acquaintances, and
strangers in a multiclass detection model. We train the detection
model with the labeled sessions collected earlier. Clearly, the
effectiveness of the detection scheme depends to a large extent
on the quality of the predictions made by the detection model.
Thus, to obtain high-quality predictions, we take the following
rigorous steps to train the model.

A. Model Development

To facilitate the following description, we label the ses-
sions browsed by stalkers and account owners as 1 and
−1, respectively. In a training dataset D of size n, D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ R

d is a labeled
instance (i.e., session) with d features and yi ∈ {1,−1} is the
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corresponding label. Our objective is to obtain a function f :
R

d → R such that given a new instance x′ with an unknown
label y′, we have f(x′) > 0 iff y′ = 1, where the function f
denotes the detection model in our scheme. In Step 4 in Fig. 3,
the SNS server feeds the session x′ into f ; then, in Step 5, the
SNS server gets f(x′) and determines whether the session is
suspicious or not by computing sgn(f(x′)).

To obtain f , we use the support vector machine (SVM), a
widely used machine learning algorithm for binary classifica-
tions. The objective functions of conventional SVMs (either
linear or nonlinear) can be solved by standard quadratic pro-
gramming algorithms. However, when applied to scenarios
like we have for now, the solver may need to deal with an
extremely large D due to the huge user base of the SNS ser-
vice. To speed up the training process, we adopt smooth SVM
(SSVM) [8], which is a variant of SVM, instead. SSVM adds
b2/2 to the objective of SVM and exploits the square of the
slacks ξ2i to penalize the noises and outliers. It utilizes the
Karush–Kuhn–Tucker (KKT) optimization condition to convert
the conventional SVM to an unconstrained minimization prob-
lem which can be solved efficiently by the Newton’s method
with an Armijo step size. The kernel trick also applies to SSVM
as well. Here we pair up the nonlinear SSVM with the RBF ker-
nel, which is defined as K(a,b) = e−γ‖a−b‖2

2 . There are two
hyper-parameters we have to determine in the nonlinear SSVM:
the penalty coefficient C and γ in the RBF kernel function. We
use the two-stage uniform design model selection method [39]
with 13 runs and 9 runs in the first and second stages, respec-
tively (according to [39]), to search for the best combination of
both hyper-parameters.

B. Feature Selection

The training of SSVM is preceded by a feature-selection pro-
cess [40] that only selects a subset of features in D for training.
The process is important for three reasons: 1) Given the large
number of sessions that SNS servers must monitor (Step 1 in
Fig. 3), a small set of features helps the SSVM scale up in mak-
ing predictions. 2) The selected features help us determine the
actions that are useful in distinguishing stalkers from account
owners. By ignoring the features that are not helpful, we can
collect fewer actions (Step 2 in Fig. 3) and save the cost of fea-
ture extraction (Step 3 in Fig. 3) on the servers. 3) The process
improves the prediction accuracy of the final SSVM.

The feature-selection process is divided into two stages, as
shown in Fig. 4. In the first stage, we use the 1-norm SVM [41]
to obtain a set of candidate features. Then, in the second stage,
we use the forward feature selection [40] algorithm to select the
best features from the candidate set for training the detection
model.

Unlike 2-norm SVM, which minimizes ‖w‖22 in its objec-
tive, 1-norm SVM minimizes ‖w‖21 (called the LASSO penalty
[42]). We utilize 1-norm SVM to derive the candidate set
because it usually finds a sparse w (i.e., a w that tends to
contain zeros) thanks to its “compressed sensing” interpreta-
tion [43]. To compile the candidate set, we only keep features
that correspond to the nonzeros in w, as the features that cor-
respond to zeros are usually redundant or noisy [41]. Next, we

Fig. 4. Steps in training a detection model.

use the forward feature-selection algorithm to select the final
features from the candidate set. Initially, the set for storing the
final features is empty. In each step, the algorithm selects one
feature from the candidate set that yields the best improvement
in SSVM’s prediction accuracy5 of SSVM and adds it to the
feature set. The above step is repeated until the candidate set is
empty, or there are no features in the candidate set can further
improve the prediction accuracy.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
detection model.

A. Configuration

After the data cleaning step (described in Section IV-A), the
set D contains 278 instances (i.e., sessions) of which 178 are
positive (i.e., labeled +1, which denotes stalkers) and 100 are
negative (i.e., labeled −1, which denotes account owners). Each
instance is represented by an 139-dimension feature vector.

To the best of our knowledge, there are no other schemes
for detecting in-situ identity fraud on SNS services. Thus, we
evaluate the detection model by simulating different observa-
tion periods and compare the results. Specifically, given an
observation period L minutes, we extract the behavioral fea-
tures of a session from those actions performed within the first
L minutes after the session starts. Then, the performance of the
detection model is evaluated for L = 1, 2, . . . , 25 min, respec-
tively. Although the subjects were asked to browse an SNS
account for 30 min in each round (see Section IV-A), we choose
the maximum of L to be 25 rather than 30 because some ses-
sions ended prematurely due to subjects’ requests and resulted
in a slightly shorter trace. Therefore, to ensure a comparable
evaluation across all the sessions, we consider L ≤ 25 here.

As described in Sections V-B and V-A, to construct the detec-
tion model, we first use an 1-norm SVM to derive the candidate
features, and then use forward feature selection and SSVM with
10-fold cross validation to select the most distinguishing fea-
tures as well as the hyper-parameters C and γ. Here, we use
the leave-one-out cross validation [40] on D to evaluate the
detection performance of our model.

B. Detection Performance at the 25th Minute

First, we consider the detection model’s performance when
L = 25 min. Table IV shows the results achieved by the model
with and without feature selection. As we can see, feature

5We use 10-fold cross validation [40] to measure the accuracy.
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TABLE IV
RESULTS ACHIEVED UNDER VARIOUS CONDITIONS

Fig. 5. Weights in w found by the 1-norm SVM over the corresponding fea-
tures, which are ranked by their weights. Only 60 features (out of 139) remain
in the feature set.

selection improves the performance because it yields higher
accuracy/F -scores and lower FPRs/FNRs. The reason is that
feature selection eliminates. As shown in Fig. 5, only 60 fea-
tures (out of 139) remain in the feature set after using the
1-norm SVM for candidate selection.

We observe that the ratio of positive instances to negative
instances in the dataset D is 1.78:1. The imbalance tends to
yield a higher FPR. To resolve this issue, we use an over-
sampling approach to randomly select and then duplicate 78
negative instances to balance the ratio between positive and
negative instances. The effect of duplicating an instance is to
double the penalty if we misclassify the instance. Therefore, by
duplicating the negative instances in D, we can avoid aliasing
and reduce the FPR. Note that because the oversampling tech-
nique causes randomness, we train 10 models and average their
results. Table IV shows the results achieved by our model with
and without oversampling. We can see that the oversampling
can control the tradeoff between FPR and FNR.

Fig. 6 shows the ROC curve and AUC of our model when fea-
ture selection and oversampling are applied. The AUC is fairly
high (0.962), while the ROC curve shows that the model can
achieve a TPR of 90% TPR and a FPR of 4.5%.

C. Early Detection Performance

To prevent theft of sensitive information, we should apply
the in situ identity fraud detection scheme as early as possible
in each session. In order to determine how our model performs
with different time limits, we vary L from 1 to 25 min and train
a model for each value of L with feature selection and oversam-
pling. Fig. 7 shows the accuracy achieved by the models. When
L ≥ 7 min, the results are stable and reasonably good, and
the accuracy rate is higher than 90%. Even at the 2nd minute,

Fig. 6. ROC curve and AUC of the model at 25 min.

Fig. 7. Accuracy of the detection scheme with different observation periods.
The graph shows that the detection model can achieve stable and reasonably
good results after 7 min.

Fig. 8. Accuracy achieved by 20 models on 20 randomly permuted datasets.
The thick line represents the average accuracy.

the accuracy is above 80%. This would help significantly as the
scheme is used as a trigger for more sophisticated analysis.

To verify the robustness of the model, we randomly permute
D for 20 times and use 10-fold cross validation [40] to train one
model for each of the 20 permutations. Fig. 8 and Table V show
the mean accuracy and standard deviation of the 20 models.
The results indicate that the standard deviation of the accura-
cies is very low regardless of L. In addition, Figs. 8 and 7 show
that the model performs consistently well using cross valida-
tions. Therefore, the performance of the detection scheme is
very robust.
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TABLE V
MEAN AND STANDARD DEVIATION OF THE ACCURACY GIVEN BY THE

MODELS TRAINED USING THE 10-FOLD CROSS VALIDATION ON 20
RANDOMLY PERMUTED DATASETS

VII. DISCUSSION

In this section, we discuss the representativeness of dataset
collected from our controlled experiments and analyze the
security robustness of the proposed scheme.

A. Dataset Validity

We acknowledge that while we did our best to mimic in
situ identity fraud incidents in our controlled experiment (c.f.,
Section IV-A), a simulated environment is certainly not real-
life scenarios and some behavioral differences would exist.
Theoretically, a stalker in a real in situ identity fraud incident
would 1) act secretly and not leave any evidence that can be
traced by the account owners and 2) act under time pressure
as account owners may come back to their devices depending
on the situation. We consider that our dataset have captured, to
some degree, the stalkers’ realistic behavior for the following
reasons.

1) The sessions used by acquaintances/strangers also yield
much lower values in f.act_add_comment [Fig. 2(c)]
and f.act_like [Fig. 2(d)] than those controlled by account
owners. This shows that most stalkers’ behavior is real-
istic as the stalkers would not like the owners to know
of their usage, even we did not create a stealthy usage
scenario for them.

2) Stalkers behave under time pressure, as shown in Fig. 9(a)
that the accumulated average action rate decreases over
time. The decrease in action rate implies that stalkers
tend to explore the information they are most interested
as early as possible, even we provided a full 30 min for
their “stalking.”

3) We inspect how the numbers of frequent action patterns
(among all the collected stalker sessions) change with
time. We first apply the cSpade algorithm [44] with a
minimum support of 0.1 to identify the frequent action
patterns shared by all the users in the stalker role. Then
we measure the maximum support, i.e., the proportion
of sessions sharing a frequent pattern, of the identified
patterns over time. Fig. 9(b) shows that the accumulated
maximum support is logarithmically increasing with time,
which indicates that initially, stalkers perform similar sets
of actions in the first few minutes. The commonality of
actions gradually decreases in the latter stages of the

session. This phenomenon manifests that stalkers tend to
check more “important” information they are interested
and after that their surfing behavior diversifies due to
difference in individual preferences.

In sum, as collecting stalkers’ behavior in real-life in situ
identify fraud is extremely challenging, if not impossible, we
believe that our controlled experiments provide a reasonable
approximation of the real-life scenario and, to some extent,
capture the essential characteristics of stalkers’ behavior, as
indicated by the significant role-driven behavioral diversity
(Section IV-C).

Although our dataset is an approximate of the reality, we
consider the proposed scheme can well serve a bootstrapping
role for in situ fraud detection. Once the proposed scheme
is deployed by SNS operators and real-life in situ identify
fraud incidents have been identified, the model could be further
revised by learning from the newly captured realistic stalking
behavior and further enhance the utility of the fraud detection
scheme.

B. Security Analysis

As shown in Fig. 3, the data collection, processing, decision-
making, and follow-up actions (such as challenging the users
if they are genuine account holders) in the proposed scheme
are all performed on the server side. Hence, it is impossible
for attackers to compromise the scheme by interfering the fraud
detection process from the clients sides.

As the detection scheme in running on the server side (i.e., by
the SNS operators), an attacker cannot avoid detection once he
logs in because all users are monitored by the server. The only
way for an attacker to continue using the compromised account
is to evade the detection model.

The detection model does not rely on any cryptographic tech-
niques and it is based completely on user behavior. Hence, to
avoid detection by the model, an attacker must 1) mimic the
account owner’s actions or 2) perform as few actions as possible
and exit the site. Attacks of the first type are less likely because
account owner’s behavior patterns are not well documented
[37]. Even if some attackers could successfully mimic owners’
actions, they would be forced to spend time on something that is
of little interest to them and may miss some desirable informa-
tion. This makes the attack less harmful. In the second type of
attacks, attackers are under time pressure because the detection
model can achieve close to 80% accuracy even if attackers only
browse victims’ newsfeeds for 1 min. The time pressure makes
the attacks less harmful because attackers may not be able to
find the information they want in such a limited period of time.

In addition, the detection scheme is not tied to a specific
detection model. For example, a personalized detection model
may be particularly helpful in identifying the first type of
attacks because it is even harder to imitate an individual’s
behavior. Moreover, a detection model that considers the times-
tamp of each action may help identify attacks of the second
type, as users (both account owners and stalkers) often per-
form actions in the some order based on habit. While this
paper points out the effectiveness of continuous authentica-
tion on detecting in-situ identity fraud, it would certainly be
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Fig. 9. Evidence that stalkers in our experiments tend to finish their favored activities in the early stages of the sessions. (a) Action rate of stalkers. (b) Maximum
support of frequent action patterns of stalkers.

Fig. 10. Frequency of the topmost positive and negative significant features that distinguish stalkers from account owners in the first 7 min. (a) Significant features
for stalkers. (b) Significant features for account owners.

possible to develop more sophisticated detection models to
defeat increasingly smart attackers.

One might also suspect that the model training process could
be contaminated by malicious attackers. We consider the risk of
this attack to be negligible due to the following reasons.

1) The in situ identify fraud issue we discuss in this paper is
“not scalable” since it normally involves physical access
of computer devices; in other words, unlike other types
of Internet frauds, such as phishing [45], a malicious
user cannot easily extend in-situ identify fraud attacks on
dozens or even hundreds of victims. Thus, it is of little
incentives for a malicious user to manage to compromise
the model training process of an in situ identify fraud
detection scheme.

2) The collection of the dataset does not necessarily involve
uncontrolled crowds where malicious attackers could
infiltrate. One option is to only collect training data
from in-house, controlled crowds, like what we did in
Section IV. One another option is to reassure the identity
of the users via a separate authentication scheme, such as

challenging the users with secret personal questions that
are often used by web services when users retrieve lost
passwords. In this way we can collect the training dataset
only from trustworthy users whose identities are double
confirmed.

VIII. CONCLUSION

In this paper, we have proposed a low-cost detection scheme
for SNSs that analyzes users’ browsing behavior to detect in
situ identity fraud incidents. Using Facebook as a case study,
we show that 1) the role-driven behavioral diversity property
does exist; 2) the property can be exploited to design a low-
cost detection scheme that is applicable to all users; and 3) the
scheme is hard to evade and it renders a reasonable detection
performance after an observation period of 2 min.

In our future work, we will study the browsing behav-
ior of individuals and develop personalized detection models.
Such models can only be activated when needed and provide
detailed analysis for suspicious sessions. We will also improve
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the current low-cost detection model to achieve higher detec-
tion accuracy within the first few minutes. Such improvements
would be possible because we see different user behavior pat-
terns in a variety of time scales. As an example, by counting
the occurrences of significant features, i.e., those with the three
most positive and three most negative weights, in SSVM with
the observation period L varies from 1 to 7 min, as shown
in Fig. 10(a) and (b) shows, respectively, we find that some
of the significant features in the first 7 min are not promi-
nent in the full 25-min model derived in Section IV-C. This
exhibits that users’ behavior may change over time and it hints
the possibility of more accurate early detection by utilizing
such time-dependent browsing actions. We hope that this work
will motivate in-depth studies on developing more sophisticated
models to prevent in situ identity fraud in general.
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