Distributed, Egocentric Representations of Graphs for Detecting Critical Structures

Ruo-Chun Tzeng¹ Shan-Hung Wu²

¹Microsoft Inc, Taiwan

²National Tsing Hua University, Taiwan

International Conference on Machine Learning, 2019

Goal

• To learn representations of graphs by using convolutions

Goal

- To learn representations of graphs by using convolutions
- ...while keeping nice properties of CNNs on images:
 - Filters detect location independent patterns
 - Filters at a deep layer have enlarged receptive fields

Goal

- To learn representations of graphs by using convolutions
- ...while keeping nice properties of CNNs on images:
 - Filters detect location independent patterns
 - Filters at a deep layer have enlarged receptive fields
- ...and being able to detect critical structures

What are the critical structures?

• Local-scale critical structures, e.g., Alkane vs Alcohol

Alkane		Alcohol	
H H H H H H H H H H H H H H H H H H H	H C-H H	H H	$ \begin{array}{ccc} H & H \\ -C & O \\ H \end{array} $

• Global-scale critical structures, e.g, Hydrocarbon

asymmetric	symmetric		
$H \\ H \\ C \\ H \\ H \\ H - C - C - \dots - C - H \\ H \\ H \\ H \\ H \\ H$	$H \ H \ H \ C \ H \ H \ C \ H \ H \ H \ $		

STOA: Graph Attention Networks (GAT)¹

ullet The (1-head) GAT learns an **attention score** $lpha_{ij}$ for each edge (i,j)

$$m{h}_i^{(l)} = \sigma \left(\sum_{j \in \mathcal{N}_i} lpha_{ij} m{W} m{h}_j^{(l-1)} + b
ight)$$

- \bullet α 's explicitly point out the critical structures
 - When jointly learned with a task, α_{ij} denotes the contribution of edge (i,j) to the model prediction

Ruo-Chun Tzeng and Shan-Hung Wu

 $^{^1\}mathsf{P}$ Veličković, G Cucurull, A Casanova, A Romero, P Lio, Y Bengio, Graph attention networks, ICLR'18

Drawback: limited learning ability

However, the (1-head) GAT suffers from limited learning ability

$$\mathbf{h}_{i}^{(l)} = \sigma \left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij} \mathbf{W} \mathbf{h}_{j}^{(l-1)} + b \right)$$

- A filter W scans one node at a time
- does not capture the interactions between nodes
- Not a serious problem for node-level (e.g., classification) tasks
- But may severely degrade the performance of graph-level tasks

A new way: Ego-CNN

Idea: to learn critical structures just like image-based CNNs

- **1** For each node i, a filter W is applied to **all nodes in the neighborhood** \mathcal{N}_i of i
- Use common visualization techniques (e.g., deconv) to backtrack critical structures

Challenge: variable-sized N_i makes W ill-defined

$$\boldsymbol{h}_{i}^{(l)} = \sigma \left(\mathbf{W} \circledast \|_{j \in \mathcal{N}_{i}} \boldsymbol{h}_{j}^{(l-1)} + b \right)$$

- ullet For images, \mathcal{N}_i can be easily defined
 - E.g., $K \times K$ pixel block centered at i
- But how to define \mathcal{N}_i for graphs?

Challenge: variable-sized N_i makes W ill-defined

$$\mathbf{h}_{i}^{(l)} = \sigma\left(\mathbf{W} \circledast \|_{j \in \mathcal{N}_{i}} \mathbf{h}_{j}^{(l-1)} + b\right)$$

- ullet For images, \mathcal{N}_i can be easily defined
 - \bullet E.g., $K \times K$ pixel block centered at i
- But how to define \mathcal{N}_i for graphs?
- Solution: nodes that are most salient to the given task in a ego-network centered at i
 - ① First layer: set $\mathcal{N}_i^{(1)}$ as the **top** K **unique nodes in Weisfeiler-Lehnman labeling**
 - ② Deep layers: $\mathcal{N}_{i}^{(I)} = \mathcal{N}_{i}^{(I-1)}$ (just like image-based CNNs)

Improved learning ability on graph classification

 In Ego-CNN, a W at layer / can detect node interaction patterns within /-hop ego-networks

Improved learning ability on graph classification

 In Ego-CNN, a W at layer / can detect node interaction patterns within /-hop ego-networks

2nd

5th

Graph classification benchmark datasets

Table: Bioinformatic Datasets

Dataset	MUTAG	PTC	PROTEINS	NCI1
WL kernel	82.1	57.0	73.0	82.2
DGK	82.7	57.3	71.7	62.5
Subgraph2vec	87.2	60.1	73.4	80.3
MLG	84.2	63.6	76.1	80.8
Structure2vec	88.3			83.7
DCNN	67.0	56.6		62.6
Patchy-San	92.6	60.0	75.9	78.6
1-head GAT	81.0	57.0	72.5	74.3
Ego-CNN	93.1	63.8	73.8	80.7

Table: Social Network Datasets

1st layer

Dataset	IMDB (B)	IMDB (M)	REDDIT (B)	COLLAB
DGK	67.0	44.6	78.0	73.0
Patchy-San	71.0	45.2	86.3	72.6
1-head GAT	70.0	-	78.8	-
Ego-CNN	72.3	48.1	87.8	74.2

• With K = 16, Ego-CNN is comparable to the state-of-the-arts

Ego-CNN can learn critical structures WITHOUT α

ullet Backtracking $oldsymbol{W}$ with common CNN visualization techniques (e.g., deconv) reveals critical structures

Table: Visualization of the critical structures detected by Ego-CNN

More benefits... and let's chat at Poster #22

- Ego-CNN can detect self-similar patterns
 - I.e., same patterns that exist at different zoom levels
 - Commonly exist in social networks
- How?

More benefits... and let's chat at Poster #22

- Ego-CNN can detect self-similar patterns
 - I.e., same patterns that exist at different zoom levels
 - Commonly exist in social networks
- ullet How? By simply tying the weights ($oldsymbol{W}$'s) across different layers

For more details, please go to Poster #22