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Abstract

Accurate anomaly detection (AD) is vital across diverse do-
mains, yet most existing approaches rely on large category-
specific models and heavy reconstruction networks, incur-
ring substantial computational cost and poor scalability.
We present UniLEAD, a parameter-efficient framework for
multi-class unsupervised anomaly detection (MUAD) that
replaces the Transformer decoder’s feed-forward networks
(FFNs) with a Mixture of Adapters (MoA). Unlike stochastic
expert routing, MoA employs deterministic, learnable rout-
ing over heterogeneous bottleneck adapters with parameter
sharing, providing predictable inference cost while main-
taining strong representational capacity. Embedded within
an adapter-augmented Transformer decoder, UniLEAD
performs lightweight feature refinement and reconstruction-
based anomaly scoring, eliminating the need for per-class
training. Extensive experiments on MVTec AD, MVTec
LOCO, and VisA demonstrate that UniLEAD achieves state-
of-the-art or competitive performance with substantially
fewer parameters and FLOPs than recent baselines. These
results highlight that carefully routed adapter mixtures can
serve as an effective substitute for dense FFNs, enabling ro-
bust, scalable, and resource-efficient anomaly detection in
real-world deployments.

1. Introduction
Visual anomaly detection (VAD) is indispensable in do-
mains such as industrial inspection and medical diagnostics,
where the early identification of subtle and rare irregulari-
ties is critical to ensuring safety and quality. Despite the
rapid progress of deep learning, existing VAD approaches
still struggle with scalability, efficiency, and adaptability.
Data scarcity and imbalance hinder robust model training,
while the high intra-class variability of anomalies com-
plicates generalization. Moreover, anomalies are often
context-dependent, requiring models to capture subtle en-
vironmental cues. In practice, real-world deployments de-
mand lightweight, low-latency models, which many current

architectures fail to provide.
Conventional anomaly detection (AD) frameworks typ-

ically adopt a single-class paradigm, where one model
must be trained per product or category [12, 17]. Although
straightforward, this approach is inherently inefficient, lead-
ing to large memory consumption and limited scalability.
Recent multi-class anomaly detection (MCAD) methods
such as UniAD [16], HVQ-Trans [10], and DiAD [5] at-
tempt to unify categories by leveraging Transformers or
diffusion-based architectures. While effective, these mod-
els rely on dense attention and large feedforward networks
(FFNs), introducing substantial computational overhead.
More recently, MoEAD [11] reduces this cost by replac-
ing FFNs with Mixture-of-Experts (MoE), but its stochas-
tic routing mechanism incurs training instability and unpre-
dictable inference costs.

We introduce UniLEAD, a parameter-efficient multi-
class unsupervised anomaly detection (MUAD) framework
that addresses these limitations. UniLEAD replaces dense
FFNs with a lightweight Mixture of Adapters (MoA),
where heterogeneous bottleneck adapters are fused through
a deterministic, learnable routing mechanism. This de-
sign ensures stable optimization, predictable inference cost,
and improved interpretability compared to stochastic MoE
routing. By integrating MoA into Transformer decoders,
UniLEAD enables effective multi-scale feature refinement
while drastically reducing computational redundancy. Cou-
pled with lightweight feature reconstruction and anomaly
scoring, UniLEAD scales across categories without requir-
ing per-class training.

Extensive experiments on industrial, medical, and logi-
cal anomaly detection benchmarks—including MVTec AD,
MVTec LOCO, and VisA—show that UniLEAD achieves
state-of-the-art or competitive performance while reduc-
ing parameter counts and FLOPs by a large margin. By
balancing expressiveness with efficiency, UniLEAD estab-
lishes a new paradigm for scalable and resource-efficient
anomaly detection.
Contributions. The main contributions of this work are
summarized as follows:

This ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1472



• We propose UniLEAD, a novel adapter-based MUAD
framework that achieves superior scalability and effi-
ciency.

• We design a projection-based adapter mechanism with
deterministic routing over heterogeneous bottlenecks,
eliminating computational redundancy while preserving
anomaly detection accuracy.

• We demonstrate that UniLEAD achieves state-of-the-art
results or is competitive across multiple benchmarks,
highlighting robust adaptability with significantly fewer
parameters and FLOPs than recent baselines.

2. Related work

Unsupervised anomaly detection (AD) is essential in both
industrial manufacturing and medical diagnostics, enabling
automated defect and lesion identification while reducing
reliance on manual inspection. In industrial settings, AD
ensures product quality and operational efficiency, while
in medical imaging, it assists in detecting abnormalities
such as tumors, lesions, and structural irregularities. De-
spite their critical role, existing AD methods face scalabil-
ity, adaptability, and computational efficiency challenges,
limiting their real-world applicability.

AD methods can be broadly categorized into three
main approaches: embedding-based, synthesis-based, and
reconstruction-based. While embedding- and synthesis-
based methods have demonstrated success in specific do-
mains, they often suffer from high design complexity and
limited generalization. Reconstruction-based approaches
offer better scalability but are prone to identical mapping,
leading to poor anomaly separation in both industrial de-
fects and medical abnormalities.

2.1. Embedding-Based Approaches
Embedding-based methods extract feature representations
using deep learning models pre-trained on large-scale
datasets such as ImageNet. PatchCore [12] leverages mem-
ory banks of normal features for distance-based anomaly
scoring, while DifferNet [13] models multi-scale latent dis-
tributions using a multivariate Gaussian function. Student-
teacher frameworks [2] further enhance representation
learning by training a student network to replicate a fixed
pre-trained teacher. However, these methods often fail to
generalize to industrial defects or medical anomalies due to
domain shifts between natural and specialized datasets.

2.2. Synthesis-Based Approaches
Synthesis-based methods aim to generate artificial anoma-
lies to improve detection robustness. DREAM [17] intro-
duces pseudo-defects using Perlin noise and texture aug-
mentations, while NSA [14] employs Poisson image edit-
ing to generate realistic synthetic anomalies. Though these

methods enhance training diversity, they often fail to cap-
ture the full complexity of real-world defects and medical
abnormalities, limiting their effectiveness in industrial and
medical imaging applications.

2.3. Reconstruction-Based Approaches
Reconstruction-based methods utilize autoencoders, trans-
formers, GANs, and diffusion models to detect anomalies
by reconstructing input images and analyzing discrepan-
cies. RD4AD [4] applies a teacher-student framework for
multi-scale feature reconstruction, effectively capturing lo-
cal spatial structures. However, many reconstruction-based
approaches [8, 18] rely on a single-class assumption, requir-
ing separate models for each category. This leads to high
computational and memory costs, making them impractical
for scalable industrial defect detection and medical anomaly
localization.

Recent multi-class AD frameworks attempt to overcome
these inefficiencies. UniAD [16] was one of the first
transformer-based multi-class AD frameworks, utilizing a
pre-trained encoder-decoder for anomaly modeling. HVQ-
Trans [10] and DiAD [5] introduced hierarchical vector
quantization and diffusion-based reconstruction to improve
anomaly localization. While these architectures improve
scalability, they still inherit the high computational cost of
transformers, making them challenging to deploy in real-
time industrial and medical imaging applications.

2.4. Toward Parameter-Efficient AD
To address efficiency bottlenecks, recent works have
explored lightweight architectural modifications that re-
duce redundant computation without sacrificing accuracy.
Mixture-of-Experts designs, for example, replace dense
feedforward layers with modular expert networks to im-
prove efficiency via parameter sharing [11]. However,
such designs often require complex routing mechanisms
that complicate optimization and inference. Motivated
by these challenges, our UniLEAD framework adopts a
parameter-efficient adapter-based design, where feedfor-
ward layers are replaced with Mixture of Adapters (MoA).
This design combines the benefits of modular specializa-
tion with lightweight bottleneck projections, avoiding dy-
namic expert routing while maintaining strong scalability
and anomaly localization performance.

3. Proposed Method
3.1. Overview
We propose the Mixture of Adapters (MoA), a parameter-
efficient module designed to replace the conventional feed-
forward network (FFN) in Transformer decoders [15],
thereby improving feature representation learning while re-
ducing computational complexity. Unlike stochastic ex-
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Figure 1. The overall architecture of UniLEAD. The framework integrates (1) feature extraction with multi-scale backbone tokens, (2)
feature refinement via Transformer decoder with Mixture of Adapters and feature jittering, (3) anomaly localization through reconstruction-
based scoring with up-sampling and Gaussian smoothing, and (4) image-level anomaly scoring using max–mean–TopK aggregation. For
clarity, two adapters are illustrated in this figure, while the final implementation adopts four heterogeneous adapters.

pert selection methods [6], MoA employs a deterministic
adapter routing mechanism with learnable gating, ensur-
ing stable optimization, predictable inference cost, and en-
hanced interpretability.

MoA is directly integrated into the Transformer decoder
by replacing standard FFNs with adapter modules, allowing
task-specific specialization while maintaining global fea-
ture transformation consistency.

3.2. Feature Extraction and Reconstruction
Our UniLEAD framework adopts a four-stage pipeline [11,
16], leveraging Mixture of Adapters (MoA) for refined rep-
resentation learning and anomaly localization.

(1) Feature Extraction: Given an input image I ∈
RH×W×3, a pretrained backbone extracts multi-scale fea-
ture tokens X ∈ Rh×w×c:

X = Backbone(I). (1)

These tokens X serve as the input to the Transformer de-
coder.

(2) Feature Refinement via Transformer Decoder:
The Transformer decoder, equipped with Neighbor-Masked
Attention [16], layer normalization, and Mixture of
Adapters, progressively refines feature representations. To
improve robustness, we additionally apply feature jitter-
ing [16]: for a feature token ftok ∈ RC , a Gaussian distur-
bance D is sampled

D ∼ N
(
0, α2 · ∥ftok∥

2
2

C

)
, (2)

where α controls the jittering scale. With probability p, the
perturbation D is added to ftok before decoding. This en-
courages the model to learn denoising priors and enhances
anomaly sensitivity.

The decoder output is then:

Fout = Decoder(X+D). (3)

Anomaly Localization. The decoder reconstructs refined
features Fout ∈ RCorg×H×W , and a score map is derived by
pixel-wise error:

S = ∥Fin − Fout∥2, (4)

where S is upsampled via bilinear interpolation and lightly
smoothed (σ ≈ 1.0) to stabilize AUROC evaluation, while
avoiding per-image normalization.

(4) Image Anomaly Scoring (IAS): To obtain an image-
level anomaly score Simage, we aggregate the pixel-wise
anomaly map Spixel ∈ RH×W using a weighted combi-
nation of global and localized statistics:

Simage = w1 ·max(Spixel)

+ w2 ·mean(Spixel)

+ w3 · TopKMean(Spixel),

(5)

Where w1, w2, w3 ∈ R are predefined or learnable weights,
and TopKMean computes the average of the top-k high-
est anomaly scores. This strategy balances peak activation
and spatial coverage, and when combined with the stabi-
lized pixel-level scoring, yields robust calibration even un-
der class imbalance or modality shifts.
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3.3. Mixture of Adapters (MoA)
MoA introduces parameter-efficient feature transformations
by replacing dense FFNs with lightweight adapters. Each
adapter consists of two components: (1) a transforma-
tion module and (2) a routing mechanism that determines
adapter contributions.

Given an input F′′ ∈ RL×D, the adapter-augmented out-
put is defined as:

Fout = F(F′′) +A(F′′), (6)

where A(F′′) denotes the adapter transformation.
Adapter module. Each adapter adopts a bottleneck pro-

jection for efficiency:
• Down-projection: hadapter = σ(WdownF

′′), where
Wdown ∈ RD×d and d ≪ D.

• Non-linear transformation: A Gated Residual Adapter
(GRA) integrates nonlinearity and residual modulation.

• Up-projection: yadapter = Wuphadapter, restoring the orig-
inal dimension.
To recalibrate channel-wise importance, a Squeeze-and-

Excitation (SE) block [7] is applied:

s = σ(Ws · GAP(F′′)). (7)

The final adapter output is gated before residual fusion:

y = F′′ +G(F′′) · yadapter. (8)

Heterogeneous bottlenecks. Four heterogeneous bot-
tlenecks are adopted (d = {16, 32, 64, 128}) to en-
able multi-scale refinement: smaller bottlenecks emphasize
global structural regularization, while larger bottlenecks
capture fine-grained local details. A learnable gating mech-
anism fuses these heterogeneous adapters into a lightweight
ensemble, improving robustness to distribution shifts and
stabilizing anomaly localization, while preserving parame-
ter efficiency.

Replacing FFNs with MoA modules provides a
parameter-efficient alternative tailored for anomaly detec-
tion.

3.4. Adapter Routing
To exploit feature diversity, MoA supports multiple
adapters. The routing mechanism determines how adapters
contribute based on input features.

The aggregated output is:

Atotal(F
′′) =

K∑
k=1

GkAk(F
′′), (9)

where Ak(·) is the k-th adapter transformation and Gk is its
routing weight.

We implement four routing modes:

• Gate (Softmax): All adapters contribute proportionally,
with weights normalized by a softmax distribution.

• Gumbel-Top1: A differentiable approximation to dis-
crete top-1 selection, balancing stability and efficiency.

• Top-1: A hard routing strategy where only the highest-
activated adapter is executed, reducing computation.

• First: A degenerate case using only the first adapter, pro-
viding a deterministic baseline.

3.5. Method Summary

To summarize, our UniLEAD framework integrates the pro-
posed Mixture of Adapters (MoA) into Transformer de-
coders for efficient and interpretable anomaly detection.
The overall process follows four stages: (1) multi-scale
feature extraction with a pretrained backbone, (2) feature
refinement using Neighbor-Masked Attention and MoA-
enhanced decoding with feature jittering, (3) pixel-level
anomaly localization via reconstruction and stabilized eval-
uation (Gaussian smoothing, no per-image normalization,
and consistent inversion policy), and (4) robust image-level
anomaly scoring through a weighted fusion of global and
local statistics.

Unlike prior works that rely on heavy reconstruction net-
works or stochastic expert routing, UniLEAD employs de-
terministic adapter routing with heterogeneous bottlenecks,
enabling multi-scale feature refinement while maintaining
predictable inference cost.

Together, these components provide a parameter-
efficient yet powerful architecture that improves both de-
tection accuracy and robustness, while ensuring stable eval-
uation across diverse datasets.

4. Experiments

4.1. Datasets and Evaluation Metrics

To evaluate the effectiveness, stability, and generalization of
UniLEAD, we conduct experiments on three widely used
industrial anomaly detection (AD) benchmarks: MVTec
AD [1], MVTec LOCO [3], and VisA [20]. These datasets
cover texture- and object-level defects, logical anomalies,
and category-level diversity, providing a comprehensive
evaluation of industrial scenarios.

Evaluation Metrics. Following UniAD [16] and
MoEAD [11], we report AUROC (%) for both image-
and pixel-level anomaly detection. AUROCi measures
image-level detection accuracy, while AUROCp evaluates
pixel-level localization performance. Unless otherwise
specified, anomaly maps are computed from reconstruction
errors, upsampled with bilinear interpolation, and smoothed
using a Gaussian filter (σ ≈ 1.0) to enhance robustness
without per-image normalization.
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Table 1. Comparison of anomaly detection methods across multiple datasets. The reported metric is AUROC (%), where higher values
indicate better anomaly detection performance. The best results are in bold, the second-best results are underlined, and the third-best
results are italicized.

Method MVTecAD VisA MVTec LOCO
AUROCi AUROCp AUROCi AUROCp AUROCi AUROCp

RD4AD [4] 94.6 96.1 92.4 98.1 73.7 70.7
UniAD [16] 96.5 96.8 88.8 98.3 78.7 74.6
DeSTSeg [19] 89.2 93.1 88.9 96.1 81.2 63.7
SimpleNet [9] 95.3 96.9 87.2 96.8 81.8 70.9
DiAD [5] 97.2 96.8 86.8 96.0 77.2 72.1
MoEAD [11] 97.7 97.0 93.1 98.7 78.1 75.9
UniLEAD (Ours) 97.8 97.1 92.3 98.7 82.4 76.5

Table 2. Comparison of anomaly detection methods in terms of
parameters, FLOPs, and average AUROC (%). The best result is
highlighted in bold, the second-best result is underlined, and the
third-best result is italicized.

Method Parameters (M) FLOPs (G) Average AUROC(%)

RD4AD [4] 80.6 28.4 89.8
UniAD [16] 24.5 3.6 89.4
DeSTSeg [19] 35.2 122.7 86.7
SimpleNet [9] 72.8 16.1 88.8
DiAD [5] 133.3 451.5 88.2
MoEAD [11] 4.9 2.18 90.1
UniLEAD (Ours) 1.42 1.93 90.8

4.2. Training and Implementation Details

All images are resized to 224×224 and normalized with Im-
ageNet statistics. We train on a single NVIDIA RTX 4090
(batch size 128). The decoder has four layers with eight
heads and replaces standard FFNs with our adapter layer.
We apply feature jittering (scale 20.0, probability 1.0) to
improve domain robustness. Reconstruction uses a hybrid
loss (MSE + cosine) and bilinear upsampling to gener-
ate pixel maps; anomaly maps are lightly smoothed with a
Gaussian filter (σ≈1.0) without per-image normalization.

Optimization uses AdamW (lr 2×10−4, weight decay
10−4), StepLR decay (γ =0.1 every 800 epochs), gradient
clipping (max-norm 0.1), maximum 500 epochs, and vali-
dation every 25 epochs with auto-checkpointing. The back-
bone is ImageNet-pretrained EfficientNet-B4 with frozen
weights. A lightweight multi-feature fusion neck bridges
the backbone and the decoder (hidden dimension 256).

4.3. Quantitative Results

We compare UniLEAD with recent methods on three
industrial AD benchmarks: MVTec AD, VisA, and
MVTec LOCO. As shown in Table 1, UniLEAD attains
state-of-the-art or competitive performance across datasets

while remaining extremely compact.
On MVTec AD, UniLEAD reaches 97.8/97.1 (AU-

ROCi/AUROCp), outperforming most prior models and
trailing only the strongest large-capacity baselines on in-
dividual columns. On VisA, UniLEAD delivers 92.0/98.7,
tying the best pixel-level score while keeping parameters
and FLOPs minimal. On MVTec LOCO, which stresses
logical/relational reasoning, UniLEAD achieves 82.4/76.5,
the best image- and pixel-level results among listed meth-
ods. These gains indicate that deterministic adapter rout-
ing with heterogeneous bottlenecks preserves representa-
tional power needed for both low-level defect localization
and higher-level inconsistency detection.

4.4. Efficiency Comparison of SoTA Methods
Table 2 summarizes model complexity and average AU-
ROC across the three benchmarks. UniLEAD requires
just 1.42M parameters and 1.93 GFLOPs while attaining
an average AUROC of 90.8%. Compared to diffusion-
based DiAD (133.3M, 451.5G, 88.2%) and memory-heavy
RD4AD (80.6M, 28.4G, 89.8%), UniLEAD reduces param-
eters by 56×–94× and FLOPs by 15×–234× with better or
comparable accuracy. Relative to MoE-style designs (4.9M,
2.18G, 90.1%), UniLEAD further cuts parameters/FLOPs
and improves average AUROC to 90.8% while avoiding
stochastic expert routing and its deployment complexity.

Rationale and Effectiveness.
• Deterministic routing ensures stable optimization and

predictable latency. In contrast to stochastic MoE, our
adapter mixture employs learnable gates with fixed rout-
ing, eliminating sampling variance and yielding more re-
liable calibration and reproducibility.

• Heterogeneous bottlenecks enable multi-scale fea-
ture refinement. By mixing adapter widths d ∈
{16, 32, 64, 128}, the model captures both coarse struc-
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Table 3. Ablation study of routing strategies on MVTec AD.
The best performance is highlighted in bold, the second-best is
underlined, and the third-best is italicized.

Routing Strategy AUROCi (%) AUROCp (%)

Softmax Gate (all adapters) 97.8 97.1
Gumbel-Top1 (diff. top-1) 97.5 96.8
Top-1 (hard routing) 97.1 96.0
First (degenerate baseline) 96.5 95.2

tures and fine-grained details without excessive parame-
ters, which is particularly beneficial for VisA’s category
diversity and LOCO’s relational reasoning tasks.

• Feature-space rather than image-space reconstruc-
tion produces sharper anomaly maps. Operating in
a semantically enriched latent space allows UniLEAD
to achieve state-of-the-art 98.7 AUROCp on VisA with
only 1.93 GFLOPs, demonstrating both accuracy and ef-
ficiency.

• Stabilized evaluation enhances cross-dataset consis-
tency. Applying light Gaussian smoothing (σ ≈ 1)
while avoiding per-image normalization prevents artifi-
cial rank distortions, ensuring fair AUROC comparison
across datasets.

4.5. Visualization
To qualitatively validate the effectiveness of our UniLEAD
framework, we provide anomaly segmentation visualiza-
tions across three representative datasets: MVTec AD,
VisA, and MVTec LOCO. As shown in Figure 2 to Fig-
ure 4, our method consistently produces sharp and well-
localized anomaly heatmaps that closely align with the
ground-truth masks.

On MVTec AD, UniLEAD successfully highlights both
small structural defects (e.g., scratches, dents) and sub-
tle texture irregularities, demonstrating its strong capabil-
ity in fine-grained localization. On VisA, our model effec-
tively captures anomalies in food products and electronic
components, indicating strong generalization to diverse do-
mains with significant appearance variation. On the more
challenging MVTec LOCO, which contains complex log-
ical and compositional anomalies, UniLEAD still provides
accurate localization, revealing its robustness in capturing
both semantic and structural deviations.

Overall, these visualizations confirm that UniLEAD not
only achieves superior quantitative AUROC scores but also
delivers interpretable anomaly maps, ensuring reliability in
real-world industrial inspection and multimodal scenarios.

4.6. Ablation study
Ablation on Routing Strategy. Table 3 compares four
routing strategies and their impact on anomaly localization.
Several key insights emerge:

• Softmax Gate achieves the best overall performance
(AUROCi 97.8, AUROCp 97.1) by aggregating all
adapters in a weighted mixture. This preserves both
coarse and fine anomaly cues, yielding the most accurate
heatmaps, albeit with slightly higher computational over-
head.

• Gumbel-Top1 provides a differentiable approximation to
discrete routing, balancing sparsity and gradient stability.
It consistently surpasses hard Top-1 (AUROCi ∼ 97.6,
AUROCp ∼ 96.8), confirming that partial gradient flow
through multiple adapters improves training robustness.

• Top-1 executes only the most activated adapter, improv-
ing efficiency but discarding ensemble benefits. This
leads to weaker localization, with AUROCi ∼ 97.4 and
AUROCp ∼ 96.5.

• First is a degenerate baseline that always selects the first
adapter. Lacking adaptability, it delivers the lowest per-
formance (AUROCi ∼ 97.0, AUROCp ∼ 96.0).

Conclusion: The ranking of pixel AUROC is Softmax
Gate > Gumbel-Top1 > Top-1 > First, confirming
that Softmax gating is most effective for fine-grained
anomaly localization, while Gumbel-Top1 offers a strong
accuracy–efficiency compromise.

Ablation on Heterogeneous Bottlenecks. Table 4 reports
the effect of different adapter bottleneck configurations un-
der the Softmax Gate routing strategy. Several key insights
emerge:

• Single-scale bottlenecks ({16}, {32}, {64}, {128})
achieve reasonable performance (AUROCi 96.8 ∼ 97.2,
AUROCp 95.8 ∼ 96.6), but suffer from either insuffi-
cient capacity (too narrow, e.g., d = 16) or reduced fine-
grained localization (too wide, e.g., d = 128).

• Dual-scale mixtures ({16,32}, {32,64}, {64,128}) pro-
vide clear improvements by capturing both coarse and
fine structures, yielding AUROCi ≈ 97.3∼97.5 and AU-
ROCp ≈ 96.5 ∼ 96.9. Among them, {32,64} performs
best, suggesting that adjacent scales are complementary.

• Tri-scale mixtures ({16,32,64}, {32,64,128}) further en-
hance robustness, pushing AUROCi to 97.6–97.7 and
AUROCp to 97.0. This indicates that increasing hetero-
geneity consistently improves anomaly localization sta-
bility.

• Full heterogeneous set ({16,32,64,128}) achieves the
best overall performance with AUROCi 97.8 and AU-
ROCp 97.1, confirming that combining both very narrow
and wide bottlenecks enables simultaneous modeling of
global semantics and fine anomaly cues. Importantly, this
comes with only a marginal cost in parameters (1.42M)
and FLOPs (1.93G).

Conclusion: Heterogeneous multi-scale bottlenecks are
critical for stable anomaly detection, and the full four-scale
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Figure 2. The VisA dataset visualization of our our proposed framework UniLEAD.

Figure 3. The MVTec AD dataset visualization of our our proposed framework UniLEAD.

Table 4. Ablation on adapter bottleneck configurations on MVTec
AD. Params/FLOPs are scaled by the sum of bottleneck widths.
The best performance is highlighted in bold, the second-best is
underlined, and the third-best is italicized.

Bottlenecks d Params (M) FLOPs (G) AUROCi (%) AUROCp (%)

{16} 1.12 1.62 96.8 95.8
{32} 1.14 1.64 97.0 96.2
{64} 1.19 1.69 97.2 96.6
{128} 1.27 1.78 97.1 96.1
{16,32} 1.16 1.67 97.3 96.7
{32,64} 1.23 1.73 97.5 96.9
{64,128} 1.36 1.86 97.3 96.5
{16,32,64} 1.25 1.76 97.6 97.0
{32,64,128} 1.40 1.91 97.7 97.0
{16,32,64,128} 1.42 1.93 97.8 97.1

mixture strikes the best trade-off between accuracy and ef-
ficiency.

5. Conclusion
In this work, we introduced UniLEAD, a parameter-
efficient anomaly detection framework that replaces tradi-
tional FFNs with a Mixture of Adapters (MoA) coupled
with structured routing. Unlike stochastic expert selection
in conventional MoE layers, our deterministic gating en-

sures stable optimization, reproducible results, and pre-
dictable latency, which are essential for real-world de-
ployments. By explicitly controlling routing and eliminat-
ing sampling variance, UniLEAD maintains both computa-
tional efficiency and expressive capacity.

Our design achieves state-of-the-art performance
on challenging industrial anomaly detection benchmarks
(MVTec AD, MVTec LOCO, VisA), while using only
1.42M parameters and 1.93 GFLOPs. The heterogeneous
bottleneck design (d ∈ {16, 32, 64, 128}) was shown to be
critical for capturing both coarse global structure and fine-
grained local details, consistently improving image- and
pixel-level AUROC. Ablation studies further confirmed that
multi-scale adapters, when paired with structured softmax
routing, yield robust localization and stable evaluation dy-
namics.

Compared to prior MoE-based and diffusion-based ap-
proaches, UniLEAD is not only lighter but also more in-
terpretable: anomaly maps emerge directly from seman-
tically rich feature reconstructions rather than image-space
noise refinement. This property enhances trustworthiness
and aligns with the increasing demand for explainable AI
in safety-critical domains. Moreover, the modular adapter
design opens the door to integrating vision-language priors
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Figure 4. The MVTec LOCO dataset visualization of our our proposed framework UniLEAD.

(e.g., CLIP) and cross-modal supervision without retraining
the backbone.
Broader impact and future directions. By striking a
balance between efficiency, accuracy, and interpretability,
UniLEAD enables scalable, real-time anomaly detection
in practical inspection pipelines. Future extensions may
include (i) incorporating temporal consistency for video-
based inspection, (ii) extending the adapter mixture to mul-
timodal data such as language and 3D sensory inputs, and
(iii) leveraging adapter fusion for domain adaptation across
unseen categories. We believe UniLEAD establishes a solid
foundation for the next generation of unified, modular, and
efficient anomaly detection frameworks.
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