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Figure 1. Semantic Knowledge and Episodic Memory Aggregation: Our Episodic COmpressor (ECO) processes and aggregates temporal
information across different scales: (I) Social interactions among adolescents in an outdoor setting, and (II) Complex family dynamics
portrayed through parent-child interactions. Simultaneously, our Semantics reTRiever (SeTR) extracts high-level semantic information: (I)
The contextual environment of a baseball game, and (II) The intersection of media consumption and domestic life through a news broadcast.
This dual-level approach enables comprehensive video understanding by capturing both specific events and overarching concepts.

Abstract

Long-form video understanding presents unique challenges
that extend beyond traditional short-video analysis ap-
proaches, particularly in capturing long-range dependen-
cies, processing redundant information efficiently, and ex-
tracting high-level semantic concepts. To address these
challenges, we propose a novel approach that more ac-
curately reflects human cognition. This paper introduces
HERMES: temporal-coHERent long-forM understanding
with Episodes and Semantics, featuring two versatile mod-
ules that can enhance existing video-language models or
operate as a standalone system. Our Episodic COmpressor
(ECO) efficiently aggregates representations from micro to
semi-macro levels, reducing computational overhead while
preserving temporal dependencies. Our Semantics reTRiever
(SeTR) enriches these representations with semantic informa-
tion by focusing on broader context, dramatically reducing
feature dimensionality while preserving relevant macro-level
information. We demonstrate that these modules can be
seamlessly integrated into existing SOTA models, consis-
tently improving their performance while reducing infer-
ence latency by up to 43% and memory usage by 46%. As

a standalone system, HERMES achieves state-of-the-art per-
formance across multiple long-video understanding bench-
marks in both zero-shot and fully-supervised settings. Our
project page and code can be found here.

1. Introduction

Video understanding reflects how humans perceive the world
through one of our most essential senses, sight, and drives a
wide range of visual and multimodal applications. Whether
we want to create better video summarization tools, index
and retrieve specifics from the vast and ever-expanding array
of video content, or improve content moderation and copy-
right enforcement, we need models that excel at video un-
derstanding. This requirement extends beyond short videos
with few frames — a task that image models can already
handle adequately — to encompass the analysis of extended
video content spanning minutes and comprising thousands
of interrelated frames.

Long-form video understanding is challenging for several
reasons. First and foremost is the temporal complexity, as it
requires handling a large number of frames throughout the
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video. Second, it requires a semantic understanding of high-
level concepts as well as the narrative structure. The third
challenge is the memory and computational constraints, mak-
ing it non-trivial to solve the previous two challenges. At-
tempts to address these issues have been made by researchers
who mainly borrow ideas from short videos [24, 43], which
is a more mature area of research encompassing action recog-
nition and video classification, among others, and for which
datasets are more abundant. However, these approaches,
which adopt techniques such as pooling [11], or 3D con-
volutions [12], often do not fully account for the unique
characteristics of long videos that distinguish them from a
simple concatenation of short video segments. Some ideas
about short-video modeling, especially for those at the spa-
tial level, may also hold for longer ones, but when it comes
to long-term modeling, macro-level representations should
be extracted efficiently.

In video understanding, we can distinguish between two
types of information: episodic and semantic1. Episodic
information refers to specific, sequential events that occur
in a video, while semantic information encompasses overar-
ching themes and concepts. To illustrate, consider the scene
presented in Figure 1. Episodic information includes observ-
ing adolescents interacting at a baseball game, followed by
tense exchanges between a mother and father. These are
specific, time-bound events that unfold sequentially. In con-
trast, semantic information involves recognizing the broader
context of youth sports culture and the backdrop of media’s
influence on domestic life. This high-level understanding
concisely overviews the scene and actions, transcending spe-
cific moments.

Building on these concepts, we propose temporal-
coHERent long-forM understanding with Episodes and
Semantics (HERMES), featuring two modular components
that can either work together as a complete system or in-
tegrate into existing models. The Episodic COmpressor
(ECO) aggregates key contiguous information as we process
the video, shaping understanding sequentially while reduc-
ing computational overhead and the SEmantic reTRiever
(SeTR) identifies and extracts high-level cues that pro-
vide a concise overview of the scene and actions. HER-
MES achieves state-of-the-art performance on four long-
form video understanding benchmarks in both zero-shot and
fully-supervised settings, outperforming the state-of-the-art
by 7.3% on LVU[43] and 14.9% on MovieChat-1k [32].

Our key contributions are as follows:
• We develop a versatile framework for processing and un-

derstanding long-form videos that can either operate as
a standalone system or enhance existing models through
modular integration.

• We propose an Episodic COmpressor (ECO) that can re-
place or augment existing memory mechanisms, consis-

1We elaborate on this in Section H.9

tently improving model performance while reducing infer-
ence latency and GPU memory usage by up to 43% and
46%, respectively.

• We develop a Semantics reTRiever (SeTR) that enhances
video understanding by distilling high-level semantic cues,
providing substantial accuracy improvements with mini-
mal computational overhead.

Through comprehensive evaluation across multiple bench-
marks, detailed ablation studies, and extensive integration
experiments with existing SOTA models, we validate the
effectiveness of ECO and SeTR, demonstrating their comple-
mentary roles in enhancing long-form video understanding
both as standalone components and as plug-in modules.

2. Related Work
Action recognition is an essential task in video understand-
ing, primarily focusing on identifying specific actions within
short video clips. Various approaches have been developed,
with convolutional neural networks forming the core of many
of them. Early work by [17] utilized 3D convolutions, while
[40] employed temporal convolutions. 2D CNNs coupled
with temporal modeling have also been explored, with rep-
resentative works such as Temporal Difference Networks
(TDN) [25] and Event Adaptive Networks (EAN) [35]. More
recently, transformer-based models have gained prominence
with works such as [11], [45], and [48].
Video question answering (VideoQA) aims to answer ques-
tions related to video content, requiring a deep understand-
ing of both visual and textual information. Datasets such as
ActivityNet-QA [46] for short videos, and MovieChat-1k for
long videos [32] provide benchmarks for evaluating models
in this field, allowing for several research endeavors on this
subject [27, 50, 52].
Long-form video understanding presents unique chal-
lenges due to the extended duration and complex narrative
structures involved. Datasets with these properties include
LVU [43], COIN [34], Breakfast [18], and MovieChat-1k
[32]. Traditional approaches to tackling such a task often
extend methods designed for short videos to handle longer
sequences, such as pooling over the temporal dimension
[11, 33]. Other methods such as [14, 43, 44] and [32] explore
memory techniques via token compression. Additionally,
[36] introduced a video semantic compression framework
using low-level bitrate coding. [41] introduced selective
structured state-spaces for long-form videos, followed by
others [15, 16] exploiting the ability of state-space models
to retain long-term context.
Video-Language Models: Recent advancements in large
language models (LLMs) [6, 37] have piqued researchers’
curiosity regarding their use for video understanding [22]. It
turns out to be a good match, as understanding videos often
involves transforming their content into words, whether it’s
video captioning, video question answering, or even action
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Figure 2. HERMES framework overview: We stream through a video window-by-window and extract features using a frozen ViT. Each
window feature is processed by the Episodic COmpressor (ECO) in an online fashion, discarding redundancies along the way and retaining
video episodes that are passed to an episodic Q-Former. The video token bank contains the concatenated features of every window, and SeTR
selects only the high-level information to pass to a hierarchical frame-to-sequence Q-Former. The episodic and high-level representations are
then concatenated before being fed to the frozen LLM, which outputs a text following the instructions.

classification. Frameworks such as [32] and [14] employ
memory techniques to handle extensive video content while
[29] presents TimeChat, explicitly conditioning the model
to manage time-dependent information.

3. Problem Statement
Given a long video V = {f1, f2, . . . , fN}, where fi repre-
sents the i-th frame and N is the total number of frames,
our objective is to develop a model M that can efficiently
process V and construct an internal understanding U of its
content. This understanding should enable the model to an-
swer queries Q or follow instructions I related to the video
content. Formally, we aim to find an optimal function:

M : (V, I)→ U (1)

such that:
• U captures episodic and semantic information from V .
• U can be used to maximize the probability P (A|Q,U) of

generating correct answers A to queries Q about the video.

The key challenges in this formulation are:
• Temporal Complexity: Efficiently processing N frames,

where N can be very large.
• Semantic Understanding: Extracting high-level concepts

and narrative structure from video content.
• Memory Constraints: Developing a method to maintain

relevant information without exhausting computational
resources.
Addressing these challenges requires an approach that can

effectively compress temporal information while preserving
both detailed episodic content and high-level semantic under-
standing. In the following section, we propose a cognitively
inspired framework to tackle these challenges.

4. Proposed Framework: HERMES

Our goal is to enhance video understanding by loosely draw-
ing inspiration from human visual processing, rather than
developing a new LLM or fine-tuning existing ones. To
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achieve this, we introduce a method that, given a video and
a set of instructions, generates the specified output, such
as video question answering (VQA) or video classification.
Figure 2 provides a high-level overview of our framework.

Our approach addresses the challenges identified in Sec-
tion 3 through two core principles of human perception:
1. An Episodic COmpressor (ECO), which structures a

video into meaningful segments:

ECO : {f1, f2, . . . , fN} → {e1, e2, . . . , eK} (2)

where K ≪ N , and ei represents compressed episodes.
2. A Semantics reTRiever (SeTR), which extracts high-

level semantic context:

SeTR : {f1, f2, . . . , fN} → {s1, s2, . . . , sL} (3)

where L≪ N , and si represents extracted semantics.
The final understanding U is generated by combining the

outputs of ECO and SeTR:

U = G(ECO(V, I), SeTR(V )) (4)

where G is a function that integrates episodic and semantic
information.

Details on ECO and SeTR are provided in Section 4.2
and Section 4.4, respectively. First, we describe our window
encoder approach which serves as the foundation for both
components.

4.1. Window Encoder
Our model takes as input a video of arbitrary length. To batch
process the video, we first specify a number of frames N to
extract, leading to v = {f1, f2, . . . , fN}, where ft denotes
the t-th frame. The ViT-G/14 encoder [10] progressively
encodes non-overlapping windows of the video data. The
window size w is a divisor of N and determines how many
frames to encode at once. The features of the k-th window
are denoted asWk ∈ RB×w×T×C , where B is the batch size,
T the number of visual tokens, and C the number of channels.
Wk are then passed on to the Episodic COmpressor (ECO)
described in Section 4.2.

4.2. ECO: Episodic COmpressor
Long videos often contain redundant information, making
it crucial to identify and consolidate key episodic elements
efficiently. To address this, we propose ECO which main-
tains a memory buffer with a maximum number of episodes
E. Upon receiving a window of frame features, Wk, we
first check whether the bufferM has sufficient bandwidth
to support the incoming features. If it does, we simply con-
catenate them to the buffer; otherwise, we proceed with the
compression. At its core, ECO is a distribution process that

determines the episode to which a certain frame belongs. It
can be summarized as:

M =

{
M⊕Wk if ∥M∥+ ∥Wk∥ ≤ E

ECO(M,Wk) otherwise
(5)

where ⊕ is the concatenation operation, ∥M∥ and ∥Wk∥
are the sizes of the buffer and the incoming features, respec-
tively.

Algorithm 1 ECO: Episodic COmpressor

1: A ←M⊕Wk

2: while ∥A∥ > E do
3: (i∗, j∗)← argmaxi̸=j

Ai·Aj

∥Ai∥∥Aj∥

4: Ai∗ ←
(Ai∗+Aj∗ )

2
5: A ← A \ Aj∗

6: end while
7: M←A

ECO works as Algorithm 1 where M is the existing
buffer, Wk represents the incoming window of frame fea-
tures, A is the concatenated buffer and new window, and
∥A∥ is the size of A. To summarize ECO, Ai·Aj

∥Ai∥∥Aj∥ com-
putes the cosine similarity between frame features Ai and
Aj , argmaxi ̸=j finds the pair of frames with the highest co-
sine similarity, (Ai∗+Aj∗ )

2 combines the most similar frames,
and A \ Aj∗ removes the frame Aj∗ from A after merging.
The process repeats until the size of A is within the maxi-
mally allowed episodes E.

4.3. Episodic Q-Former
To aggregate learned queries into episodes as we did the
video features, we integrate ECO as a pruning module within
the Q-Former architecture (initialized with weights from
[7]). Given initial queries and instructions, we perform
self-attention on these queries followed by cross-attention
between the queries and visual representations M. The
enhanced queries then undergo an ECO-like process, where
we iteratively merge similar queries across video windows,
effectively forming video query episodes of high information
density. The following equation summarizes the process,

Q = ECOq (CA (SA(Q0),M)) (6)

where Q0 represents the initial queries,M denotes the vi-
sual representations from the visual ECO, SA(Q0) applies
self-attention on the initial queries, and CA(·,M) performs
cross-attention between the self-attended queries and the vi-
sual representations. Finally, ECOq(·) – note the q to differ-
entiate it from the visual ECO – applies the iterative merging
process similar to the compression detailed in Section 4.2 on
the queries. The episodic Q-Former outputs Q ∈ RB×q×C′

with B, q and C ′ alluding to the batch size, the number of
queries and the channel dimension, respectively.
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4.4. SeTR: Semantics reTRiever
To complement ECO and capture higher-level semantic
information from the video, we develop a Semantics re-
TRiever (SeTR). SeTR is designed to identify and consoli-
date important high-level information that may be scattered
(contiguously or not) throughout the video. Given a video
feature tensor F ∈ RB×N×T×C , where B is the batch size,
N the number of frames, T the number of tokens per frame
and C the channel dimension, SeTR operates as follows: we
first normalize F to ensure consistent scaling across features.
Second, we apply a stride of k to create two groups, group
X containing every k-th frame, resulting in N

k frames and
group Y with the remaining N − N

k frames. Third, we calcu-
late dot product similarity scores between frames in X and
Y . Finally, for each frame in Y , we merge it with its most
similar frame in X , based on the computed scores by taking
their mean.

This process effectively reduces the number of frames
from N to N

k , consolidating semantic information while
maintaining the most relevant features across the video time-
line. The resulting semantic representations are denoted as
F ′ ∈ RB×N

k ×T×C . We evaluate the effectiveness of this
approach in Section 5.4. While ToMe [3] have explored
token reduction in vision transformers, their approach and
objectives differ significantly from ours. Their method fo-
cuses on minor token reductions within individual frames,
specifically between different layers of a Vision Transformer.
In contrast, SeTR retains the most salient frames while sig-
nificantly reducing redundancies.

4.5. Hierarchical QFormer
Following our SeTR, is a hierarchical Q-Former composed
of a frame Q-Former (fQFormer), a frame-to-sequence
adapter and a video Q-Former (vQFormer). The frame
Q-Former enhances each semantic piece of information, in-
dependently of the others, and the video Q-Former consoli-
dates them. The resulting query Qsem ∈ RB×q×C′

contains
the semantic representations of the entire video.

Qsem = vQFormer(Linear(fQFormer(F ′))) (7)

4.6. From Representations to Natural Language
After obtaining the episodic representations Q and the se-
mantic representations Qsem, we prepare them for input into
a Large Language Model (LLM). Specifically, we concate-
nate Q and Qsem to form a unified representation vector.
This concatenated vector is then projected into the input em-
bedding space of the LLM using a learned linear transforma-
tion. In our implementation, we utilize a Vicuna-7B model
[6] as the LLM. The model, conditioned on this projected
representation and guided by task-specific instructions, gen-
erates the requested natural language output. This approach
allows us to leverage the LLM’s pretrained knowledge and

language generation capabilities while incorporating our
task-specific episodic and semantic information. The pro-
cess is summarized by the following equation:

Ŷ = LLM(U, I) (8)

where U = W [Q;Qsem] + b denotes the understanding
stemming from the aggregation of semantic and episodic
information, Ŷ is the generated output, [Q;Qsem] the con-
catenation of Q and Qsem, W and b are the learned pro-
jection matrix and bias respectively, and I represents the
task-specific instructions.

5. Experiments
5.1. Datasets and Evaluation Metrics
We evaluate our approach on two primary tasks: long-form
video classification and long-form video question answering.

For long-form video classification, we utilize three
datasets. The first, LVU [43], focuses on movie content,
offering a rich source of narrative and thematic video data.
The second, Breakfast [34], consists of instructional videos
that emphasize procedural understanding. Lastly, COIN [18]
is another instructional video dataset that covers a wider
range of procedural activities compared to Breakfast. We
report top-1 classification accuracy on these datasets.

For long-form video question answering, we employ the
MovieChat-1k dataset [32] and report both zero-shot and
fully-supervised results. As evaluation metrics, we follow
the evaluation protocol developed by [22], employing GPT-
3.5-turbo [4] to assess both accuracy and answer quality
score. We also perform plug-and-play analysis of ECO and
SeTR on three SOTA methods including MA-LMM [14],
LongVA [51] and LLaVA-OneVision [19] and show en-
hanced performance on VideoMME [13] and MovieChat-1k.

5.2. Quantitative Results
For VQA, we evaluate on the MovieChat-1k dataset [32].
As shown in Table 1, HERMES surpasses recent LLM-
based models including MovieChat [32], Video-ChatGPT

Model Global Breakpoint
Acc. Score Acc. Score

MovieChat [32] 63.7 3.15 48.1 2.46
Video-ChatGPT [22] 58.7 2.89 47.8 2.43
Video-LLaMA [49] 56.3 2.72 45.8 2.11
VideoChat [20] 60.2 3.08 46.3 2.32

HERMES (Ours) 78.6 4.23 57.3 3.29
HERMES (Ours)‡ 84.9 4.40 65.8 3.65

Table 1. Zero-shot performance on MovieChat-1k. Our model
significantly outperforms existing methods. The model marked
with ‡ is fully supervised.
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LVU
Model Content Metadata Avg Breakfast COIN

Relation Speak Scene Director Genre Writer Year

FACT [21] - - - - - - - - 86.1 -
Obj. Transformer [43] 53.1 39.4 56.9 52.1 54.6 34.5 39.1 47.1 - -
VIS4mer [15] 57.1 40.8 67.4 62.6 54.7 48.8 44.8 53.7 88.2 88.4
TranS4mer [16] 59.5 39.2 70.9 63.9 55.9 46.9 45.5 54.5 90.3 89.2
S5 [41] 67.1 42.1 73.5 67.3 65.4 51.3 48.0 59.2 90.7 90.8
Movies2Scenes [5] 71.2 42.2 68.2 70.9 57.8 55.9 53.7 60.0 - -
MA-LMM [14] 58.2 44.8 80.3 74.6 61.0 70.4 51.9 63.0 93.0 93.2

HERMES (Ours) 67.6 47.5 90.0 82.6 69.5 77.2 57.7 70.3 95.2 93.5

Table 2. SOTA Comparison on the LVU, Breakfast and COIN datasets: The table presents Top-1 accuracy for various models. Unlike the
minor incremental improvements observed among other methods, our model demonstrates a significant performance leap, outperforming its
nearest competitor by 7.3% on LVU and 2.2% on Breakfast. The highest score is highlighted in bold, and the second highest is underlined.

Model Acc. Time Mem. (GB)

LongVA (7B) 54.11 1 42.5

+ ECO 54.19 0.700 (-30%) 22.9
+ SeTR 54.56 0.726 (-27%) 32.7

Table 3. Zero-shot performance comparison of LongVA with
and without ECO and SeTR integration on VideoMME.

Model Acc. Time Mem. (GB)

LLaVA-OV (7B) 58.26 1 40.6

+ ECO 58.93 0.650 (-35%) 33.4
+ SeTR 59.30 0.673 (-33%) 33.4

Table 4. Zero-shot performance comparison of LLaVA-OneVision
with and without ECO and SeTR integration on VideoMME.

Model Acc. Score Time Mem. (GB)

MA-LMM 73.3 4.05 1 30.2

+ ECO 76.7 4.14 0.569 (-43%) 30.2
+ SeTR 77.1 4.16 1.015 (+1.5%) 32.5

Table 5. Zero-shot comparison of MA-LMM with and without
ECO as memory manager and integrating SeTR on MovieChat-1k.

[22], Video-LLaMA [49], and VideoChat [20], achieving a
substantial 14.9% improvement over previous best results.
On standard long-form video classification benchmarks in-
cluding LVU [43], Breakfast [18], and COIN [34], HER-
MES consistently outperforms existing approaches (Table 2).
We compare our model against three categories of meth-
ods: transformer-based models [5, 21, 43], hybrid archi-
tectures combining state-space and transformer approaches
[15, 16, 41], and the LLM-based model MA-LMM [14].
Notably, HERMES achieves a 7.3% improvement over the
previous state-of-the-art on LVU.

5.3. Pilot Study: ECO and SeTR as plug-in modules
In this pilot study, we demonstrate the versatility and effec-
tiveness of our Episodic COmpressor (ECO) and Semantics
reTRiever (SeTR) by integrating them into three state-of-the-
art video-language models: MA-LMM [14], LongVA [51],

and LLaVA-OneVision [19] and evaluate them on two chal-
lenging benchmarks: MovieChat-1k [32] and VideoMME
(w/o sub.) [13]. The results are reported in Tables 5, 3 and 4.
ECO: A Lightweight Episode Compressor. Integrating
ECO, we notice consistent and substantial improvements
across all models. Most notably, replacing MA-LMM’s
memory bank with ECO yields a significant 3.4% increase
in accuracy while simultaneously reducing inference time2

by 43% and keeping memory usage constant. Similar ef-
ficiency gains are observed when integrated with LongVA
[51] and LLaVA-OneVision [19], where ECO maintains or
improves accuracy while reducing latency by 30% and 35%,
respectively, and almost halving the GPU memory usage in
the case of LongVA.
SeTR: An Efficient Semantics Retriever. To further vali-
date the complementary nature of our modules, we integrate
SeTRinto the same three models. As evidenced in Tables 5, 3,
and 4, SeTR consistently enhances the models’ performance.
For MA-LMM, we observe a substantial 3.8% increase in
accuracy and a 0.11 improvement in score, achieved with
only a minimal 1.5% increase in inference time. This demon-
strates SeTR’s ability to extract rich semantic information
while maintaining computational efficiency. When com-
bined with ECO, the integration of SeTR into LongVA and
LLaVA-OneVision yields further accuracy improvements

2Inference time relative to the baseline
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Acc. Score

w/o 55.1 3.55
Rand. 76.9 4.13
FIFO 77.1 4.15
ECO 78.6 4.23

Table 6. Ablations on the memory update
design of our Episodic COmpressor.

Acc. Score

w/o 73.3 4.09
MaxPool 70.4 3.99
AvgPool 73.3 4.04
K-Means 75.7 4.11
SeTR 78.6 4.23

Table 7. Ablations on different semantic
compression methods.

Acc.

fQFormer 93.2
vQFormer 94.1
HQFormer 95.2

Table 8. Performance comparison between
frame Q-Former, video Q-Former and our
hierarchical Q-Former.
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of 0.37% for both models, while preserving the significant
latency and memory usage reductions.

The consistent performance improvements achieved by
both modules across different architectures and datasets un-
derscore their effectiveness as plug-and-play solutions for
enhancing video-language models. For MA-LMM, we eval-
uate SeTR in conjunction with their existing memory bank,
demonstrating its ability to extract complementary semantic
information. For LongVA and LLaVA-OneVision, we show-
case the additive benefits of incorporating both modules
sequentially, highlighting their synergistic relationship in
improving model capabilities while maintaining efficiency.

5.4. Ablation Studies
Ablations are conducted on the MovieChat-1k test set (global
mode) using the zero-shot setting with additional ablations
on the Breakfast dataset using the fully-supervised setting.
These experiments focus on our two primary contributions,
ECO and SeTR. For extended and more comprehensive abla-
tions, please refer to Section H.4 (in the Supp.). We also visu-
alize the features extracted by each module in Section H.7.1
How important is ECO? In Table 6, we demonstrate the
critical role of ECO through several experiments. The re-
sults indicate that the absence of our ECO and the Episodic
Q-Former leads to a significant degradation in model per-
formance due to the model lacking micro-level continuous
representations. We further explore alternative update strate-
gies, including randomly selecting features to retain (Rand.)

and employing a first-in-first-out (FIFO) streaming approach.
Our proposed update strategy outperforms both the Rand.
and FIFO methods, highlighting its efficacy in retaining more
relevant episodes.
How important is SeTR? SeTR is designed to complement
the episodic knowledge of our model with semantic insights.
In Table 7, we observe that removing SeTR results in a 5%
drop in accuracy. Additionally, we show that naive methods
such as max and average pooling are not as effective.
Do we need a hierachical Q-Former? Yes. We conducted
an ablation study on the Breakfast dataset [18], to evaluate
the efficacy of our proposed hierarchical Q-Former archi-
tecture. As shown in Table 8, our hierarchical Q-Former
achieves superior performance with an accuracy of 95.2%,
outperforming both flat frame-level (fQFormer) and video-
level (vQFormer). This improvement can be attributed
to the hierarchical structure’s ability to capture multi-scale
features, effectively aggregating information from frame to
video level. By first processing frame-level details and then
aggregating them at the video level, our approach mitigates
information loss that may occur in direct video-level process-
ing while avoiding the computational intensity of processing
every frame individually.
How effective and efficient is ECO compared to other
memory compressors? To demonstrate the effectiveness
and efficiency of our proposed ECO, we conduct a compara-
tive analysis against two strong existing compression tech-
niques: ToMe [3] and MA-LMM [14] in Figure 3. We calcu-
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late the inference time for each model on the MovieChat-1k
dataset. Powered by ECO, HERMES achieves the highest ac-
curacy (78.6%) among all models, outperforming MA-LMM
by 5.3% and ToMe by a substantial 13.8%. HERMES also
achieves the highest inference speed among the compared
models, while maintaining superior accuracy. It is slightly
faster than ToMe and significantly outperforms MA-LMM,
reducing inference time by 46% relative to the latter. These
results demonstrate our model’s ability to deliver state-of-
the-art accuracy without compromising on efficiency.
Hyperparameters for ECO and SeTR. Our experiments
on the MovieChat-1k (zero-shot) and Breakfast (fully-
supervised) datasets reveal compelling insights into the opti-
mal configuration of ECO (Figure 4) and SeTR (Figure 5).
For ECO, we discover that an episodic memory size of 20
consistently yields peak performance across both datasets,
achieving a 78.6% accuracy on MovieChat-1k and a 95.2%
on Breakfast. This sweet spot balances comprehensive video
representation with computational efficiency, as larger mem-
ory sizes show diminishing returns. SeTR’s performance
proved equally intriguing, with a keep ratio of 20% (reduc-
ing representations by 80%) emerging as the optimal choice
for both datasets. Such results demonstrate the resilience of
HERMES to hyperparameter variations suggesting that it is
suitable for deployment across diverse video understanding
datasets with minimal hyperparameter tuning.

5.5. Qualitative Results
We present qualitative results on a challenging movie scene
from the MovieChat-1k dataset (Figure 6) to evaluate our
model’s capability in answering both fine-grained and gen-
eral questions about an extended video (14k frames). To
rigorously assess the models, we bypass the original Q&As
from the dataset (e.g., Q: What’s the time in the video?
A: Day, ...) and ask questions that require a deeper un-
derstanding of the scene. Our model accurately responds
to these questions while exhibiting a candid acknowledg-
ment of its limitations (e.g., Q3). In contrast, MovieChat
[32] frequently generates hallucinated and incorrect answers.
HERMES achieves this performance by processing only
100 out of the 14k frames (approximately 0.7%), whereas
MovieChat processes 2,048 frames, more than 20 times the
data utilized by HERMES. We provide additional qualita-
tive results and failure cases in the supplemetary material,
Section H.7 and Section H.8.

6. Limitations
While HERMES demonstrates significant efficiency and per-
formance gains, it relies on heuristics for both episodic com-
pression and semantic retrieval, which may occasionally fail
to capture subtle but important temporal details or contextual
nuances. Furthermore, the episodic compressor and semantic
retriever operate independently, potentially allowing redun-

Figure 6. Qualitative Results: We select a challenging video from
the MovieChat-1k dataset and pose various difficult questions to
both MovieChat [32] and HERMES. The results demonstrate our
model’s superior ability to answer both fine-grained questions (Q1
and Q3) and general questions (Q2). Answers highlighted in blue
denote tentative answers, red denote wrong answers, purple denote
hallucinations, and green denote correct answers.

dancy. Due to computational constraints, we were unable to
pretrain HERMES on large-scale video datasets, limiting
direct comparisons with extensively pretrained models like
LLaVA-OneVision on benchmarks such as VideoMME. Nev-
ertheless, the substantial improvements achieved through our
lightweight integration approach suggest promising direc-
tions when combined with more computational resources.

7. Conclusion

We present HERMES, a method for enhancing long-form
video understanding through two powerful, modular
components inspired by cognitive processes. The Episodic
COmpressor (ECO) captures representations as sequences
of continuous actions while significantly reducing compu-
tational overhead, and the Semantics reTRiever (SeTR)
serves as an efficient semantic enrichment mechanism.
As standalone components, these modules can be seam-
lessly integrated into existing video-language models,
consistently improving their performance while reducing
inference latency. As a complete system, HERMES
achieves state-of-the-art results across several long-video
datasets, significantly outperforming existing methods.
Through extensive experiments on five datasets, and
integration studies with three SOTA models, we have
demonstrated the effectiveness, efficiency, and versatility
of our approach. As model sizes continue to increase and
inference efficiency becomes a critical bottleneck in video
understanding, our work provides a timely and founda-
tional approach for both enhancing existing LLM-based
systems and developing more scalable standalone solutions.
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HERMES: temporal-coHERent long-forM understanding with Episodes and
Semantics

Supplementary Material

H. Supplementary Material
This Supplementary document is organized as follows:
• A.1 Reproducibility Statement
• A.2 Implementation Details
• A.3 Model Details
• A.4 Extended Ablations
• A.5 HERMES vs. MA-LMM vs. MovieChat
• A.6 A Note on Latency
• A.7 More Qualitative Results
• A.8 Error Analysis: When does HERMES fail and why?
• A.9 How is our approach related to cognitive processes?

H.1. Reproducibility Statement
To facilitate the reproducibility of our work, we will make
our code, pretrained models, default hyperparameters, and
preprocessed annotations publicly available. Detailed hy-
perparameters for each dataset are also provided in Table 9.
Our model demonstrates efficient performance, completing
inference on the MovieChat-1k test set in 13 minutes (22
FPS) using a single V100 GPU (32 GB), and training on the
MovieChat-1k dataset in less than 12 minutes with 8x 32
GB GPUs. In contrast to recent LLM-based approaches that
necessitate extensive and costly multi-stage pretraining on
increasingly large datasets, our model is designed for acces-
sibility, thereby lowering the barrier for researchers without
access to high-end computing resources. We achieve high
performance while maintaining accessibility by leveraging
existing pretrained weights and implementing our training-
free ECO and SeTR, resulting in a model where finetuning is
optional. We also demonstrate the applicability of our mod-
ules to existing video models, and are planning to submit
pull requests to integrate our modules into these models.

For fully-supervised results, QFormers and adapter are
fine-tuned on the respective dataset’s training split. For plug-
in experiments, ECO and SeTR are inserted into target ar-
chitectures at inference time, with zero additional training,
demonstrating true plug-and-play capability.

H.2. Implementation Details
To ensure the reproducibility of our results, we provide train-
ing and inference details in Table 9. These settings are
mostly consistent across different datasets. In the table, LR
is the learning rate, and Keep Ratio is the SeTR keep ra-
tio. Episodes refer to the number of episodes to which we
compress the input frames (i.e., the capacity of ECO). The
number of frames (N) represents the quantity of frames re-
tained from the original video to serve as input to the model.

These frames are selected by applying a regular stride over
the original video’s frame sequence, where the stride length
is determined by the ratio of original frame count to N. Max
Epoch = 20 means we run the program for 20 epochs, per-
forming evaluation after each epoch, and then pick the model
with the highest validation accuracy. MovieChat-1k (G) and
MovieChat-1k (B) denote global and breakpoint modes, re-
spectively. All models were trained on 8 V100 GPUs (32GB
VRAM each). We test on VideoMME using the zero-shot
setting by applying our modules to two different models, the
same parameters were used across models for consistency.

H.3. Model Details
H.3.1. Details of our Episodic QFormer
The Episodic Q-Former, as visualized in Figure 7, extends
the original QFormer architecture by inserting the Episodic
COmpressor (ECO) described in Section 4.2. It begins with
a set of initial queries that undergo a self-attention process,
enhancing internal query representations. These queries
then interact with episodic visual features through cross-
attention, allowing the incorporation of contextual visual
information. The resulting enhanced queries are fed into our
ECO module alongside existing query episodes, which rep-
resent previously processed queries grouped into episodes.
ECO iteratively updates the query episodes, adding the new
queries to the existing episodes. This Episodic QFormer
allows the model to better handle long sequences or repeated
queries by maintaining richer contextual knowledge across
iterations.

To mitigate temporal confusion during merging, we apply
positional encoding (PE) to frame features before ECO. This
effectively discourages out-of-order merges by embedding
temporal locality directly into similarity calculations. As an
ablation, removing PE reduces MovieChat-1k accuracy
from 78.6 to 77.3 on MovieChat-1k, indicating its effective-
ness in preserving temporal coherence despite compression.
Other studies such as Transformer-XL [8] and Compressive
Transformer [28], also report performance drops when posi-
tional biases are removed from their compression modules.

ECO implicitly captures event frequency: frequent
events naturally occur across multiple frames and thus
have higher likelihoods of being retained or merged into
reinforced prototypes within the memory bank. This self-
reinforcing mechanism ensures high-importance (and often
high-frequency) events remain well-represented. Explicit
event frequency tracking is an idea worth exploring, how-
ever, we believe it would be more computationally intensive
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Dataset Max Epochs LR Batch Frames (N) Episodes Keep Ratio

MovieChat-1k (G) 1 1e-4 32 100 20 0.2
MovieChat-1k (B) 1 1e-4 32 40 10 0.5
LVU 20 1e-4 32 100 20 0.2
COIN 20 1e-4 32 100 20 0.2
Breakfast 20 1e-4 32 100 20 0.2
VideoMME (LongVA) - - 1 128 32 0.125
VideoMME (Llava-OV) - - 1 128 32 0.125

Table 9. Hyperparameters used for different datasets.

...

Initial Queries

Self-Attention

Episodic Features

Cross-Attention

...

Enhanced Queries

Existing Query
Episodes

Updated Query Episodes

Figure 7. Illustration of our Episodic QFormer: We insert
our ECO in the original QFormer to effectively and efficiently
compute and aggregate queries across long video sequences. It
returns query episodes representing the whole video.

Video Tokens
BankSplit

Y X

framesframes

3 to 1

2 to 1

3 to 1

Representations

Merge

Figure 8. Illustration of SeTR: Our Semantics reTRiever uses
a stride of k split the videos into groups X of N/k frames and
Y of N − N

k
frames, then merge each frame from Y to its most

semantically similar in X .

and may force important but infrequent representations out
of memory.

H.3.2. Details of SeTR

We design SeTR as an efficient tool to retrieve semantic
information from a long video. Given tokens extracted from
a long video sequence, we use a stride of size k, to form a
group of N

k frames representing the number of semantics
we want to extract. We then compress the remaining N −
N
k frames into extracted N

k frames to obtain the semantic
representations. SeTR is illustrated in Figure 8.

H.4. Extended Ablations

H.4.1. How does the number of frames affect the model’s
accuracy and latency?

MovieChat [32] processes 2048 frames for each video, while
we use only 100 frames, as previous studies have demon-
strated how redundant video data is [31, 42]. Given that
the MovieChat-1k dataset contains very long videos (some
exceeding 14,000 frames), we conducted experiments to ex-
tend the number of frames our model processes. Specifically,
we experiment with 40, 80, 100, 300, 500, and 1000 frames
while keeping the number of episodes constant. As for the
SeTR keep ratio, we decrease it in function of the number
frames so that the number of semantic features we keep
equals 20.

We observe a complex relationship between model accu-
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Figure 9. Accuracy and latency as functions of the num-
ber of frames processed: This figure demonstrates the
non-monotonic relationship between accuracy and frame
count, with peak performance at 80 frames. Latency in-
creases super-linearly with frame count while accuracy
stalls, highlighting the redundancy of video data.
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Figure 10. Accuracy and latency as functions of input
window size: The graph illustrates the interplay between
model accuracy, processing latency, and the window size.
Notably, accuracy peaks at a window size of 10, while
latency stabilizes for window sizes of 10 and above. In all
cases the accuracy only slightly fluctuates.

racy, processing latency, and the number of frames analyzed.
Figure 9 illustrates these relationships, providing insights
into the performance trade-offs of our model. As evident
from Figure 9, the relationship between accuracy and the
number of frames is non-monotonic. Accuracy initially in-
creases as the number of frames grows, reaching a peak of
79.4% at 80 frames with a modest latency (note that we use
100 frames as the default parameter in other experiments
for consistency with other datasets). This suggests that up
to this point, additional frames provide valuable context
that enhances the model’s understanding. However, beyond
80 frames, we observe a decline in accuracy, possibly due
to the introduction of noise or irrelevant information from
temporally distant parts of the video.

Latency, on the other hand, exhibits a near-linear increase
with the number of frames up to 300 frames, after which
it grows super-linearly. This rapid increase in latency for
higher frame counts underscores the computational chal-
lenges of processing large numbers of frames, particularly
in real-time or near-real-time applications.

Interestingly, the model’s performance at 1000 frames
(76.7% accuracy) is lower than its performance at 40 frames
(77.6% accuracy), but with a significantly higher latency
(2676s vs. 143s). This observation highlights the diminish-
ing returns and potential drawbacks of simply increasing the
number of processed frames. It also underscores the impor-
tance of thoughtful frame selection in video understanding
tasks. Future work could explore adaptive frame selection
techniques that dynamically adjust the number of frames
based on video content, potentially optimizing both accuracy
and efficiency.

H.4.2. How does the window size affect the model’s ac-
curacy and latency?

Our analysis of our model’s zero-shot performance on the
MovieChat-1k test set reveals intriguing relationships be-
tween accuracy, latency, and input window size. Figure
10 illustrates these trade-offs. As evident from Figure 10,
the relationship between accuracy and window size is non-
monotonic. Accuracy initially increases with window size,
reaching a peak of 78.6% at a window size of 10. This sug-
gests that providing more context to the model improves its
performance up to a certain point. However, beyond this
optimal window size, accuracy begins to decline, possibly
due to the introduction of irrelevant context.

Latency exhibits a sharp decrease from window size 1
to 5, after which it remains relatively stable. This indicates
that while smaller window sizes may seem computationally
advantageous, they incur higher latency, possibly due to the
need for more frequent ECO call. The optimal trade-off oc-
curs at a window size of 10, where we observe peak accuracy
and stabilized latency suggesting that carefully tuned con-
text windows can enhance long-form video understanding
without incurring additional computational costs.

H.5. HERMES vs. MA-LMM vs. MovieChat
HERMES versus MA-LMM: For each incoming frame,
MA-LMM adds it to the memory bank by computing the
similarities with adjacent frames and merging the incoming
frame with its most similar in the memory bank. Below are
our main differences.

• HERMES takes a distributed approach. Our ECO, dis-
tributes the frames of the incoming window to the most
appropriate episode. This approach is more intuitive and
better mirrors human memory formation.
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• Frames can be grouped into episodes regardless of tem-
poral adjacency, unlike MA-LMM which only considers
adjacent frames. This naturally handles scene transitions,
flashbacks, and non-linear narratives.

• HERMES is vastly more efficient and accurate. As shown
in Table 5 in the main paper, our memory management
system almost halves the inference time (-43%) when
plugged into MA-LMM while being 3.4% more accurate.

• HERMES also captures semantics. Our Semantics Re-
triever (SeTR) complements the episodic memory and is
shown in Table 5 to increase the accuracy of MA-LMM
by almost 4% with only a negligible increase in latency.

HERMES versus MovieChat: Moviechat’s short-term
memory uses a FIFO mechanism. Its long-term memory
uses ToMe. Below are the main differences
• HERMES has episodes instead of short-term memory, and

our update approach is based on similarity to a certain
existing episode instead of FIFO. As shown in Table 6 of
the paper, FIFO’s performance is inferior to ECO.

• HERMES’s long-term memory is implicitly encoded in
ECO. We consider SeTR as a semantics scanner that re-
trieves scattered semantics from the video.

• 22 FPS processing speed compared to MovieChat’s 0.01
FPS (13 minutes vs 1 day on MovieChat-1k) using a V100
GPU (32 GB).

• HERMES achieves high performance with only 100
frames compared to MovieChat’s 2048 frames.

H.6. A Note on Latency
The MovieChat-1k test set comprises 170 videos, from each
of which our model samples 100 frames. This results in
a total of 17,000 frames to be processed. Our empirical
measurements show that the model requires 774 seconds to
complete end-to-end inference on this dataset using a single
V100 GPUs (32GB VRAM). This translates to a processing
speed of approximately 22 frames per second (FPS), which
is very close to real-time performance. Such a result suggests
that our approach is not only effective in terms of accuracy
but also efficient enough for practical applications in video
understanding tasks.

H.7. Qualitative Results
Animal Identification. Figure 11a demonstrates our
model’s superior performance in animal identification com-
pared to MovieChat. In this example, MovieChat incorrectly
identifies a leopard as a cheetah, despite no cheetah being
present in the video. This misidentification underscores the
importance of accurate visual feature extraction and seman-
tic understanding in long-form video analysis.
Animal Counting. Figure 11b showcases our model’s ability
to perform complex counting tasks, even with limited infor-
mation. The task involves counting baby bears, which appear
infrequently in the video. Despite analyzing only 100 frames

compared to MovieChat’s 2048 frames, our model accurately
locates and counts the baby bears. This demonstrates the
efficiency of our ECO and SeTR modules in capturing and
retaining crucial information from sparse appearances.
Determining People’s Relationships. In Figure 11c, we
compare our model’s performance against MA-LMM in
determining relationships between people over extended
video sequences. Both models were trained on the LVU
dataset. Our model’s superior performance in this task can
be attributed to the episodic memory compression technique,
which allows for better retention and analysis of interactions
across thousands of frames.

H.7.1. Visualization of ECO and SeTR
Figure 12 demonstrates the inner-workings of ECO and
SeTR. The top row illustrates a curated summary of the
video content, highlighting diverse scenes, such as land-
scapes, wildlife, and environmental features.

SeTR is responsible for extracting high-level semantic
features and grouping frames with similar themes, as shown
in the mid row. For instance, the module effectively captures
thematic clusters such as “Landscape,” “Various Birds,” and
“Reptiles,” providing a concise overview of the video.

Meanwhile, ECO processes the video at a more granular
level, segmenting it into coherent episodes that reflect the
narrative flow. The bottom row showcases this segmenta-
tion, organizing the content into episodic units like “Arid
Landscape,” “Lake and Aquatic Bird,” and “Flies.” This two-
tiered approach ensures both thematic abstraction and tem-
poral coherence, enabling a comprehensive understanding
of the video.

H.8. Error Analysis: When does HERMES fail and
why?

Our model, while generally effective, demonstrates several
notable failure cases that warrant further investigation and
improvement. Figure 13 illustrates examples where the
model’s predictions deviate from ground truth answers, re-
vealing key limitations in contextual reasoning and temporal
information integration. Figure 13 presents two sets of video
frame sequences that highlight shortcomings in our model’s
performance. In the top row, we observe a documentary on
marine life. Despite clear visual cues of underwater scenes
and diving equipment, the model incorrectly predicts that
no one got underwater. The bottom row showcases a more
complex scenario from a wildlife documentary. Here, the
model exhibits multiple errors: It underestimates the number
of cheetahs involved in the hunt, predicting only one when
at least three are present. This indicates a weakness in quan-
titative reasoning across temporally distributed information.
The model incorrectly predicts that the cheetah’s hunt was
unsuccessful, contradicting the visual evidence. This error
points to difficulties in inferring outcomes from sequences
of events. Lastly, the model fails to recognize the fate of
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(a) Animal Identification: MovieChat mistakenly identifies a Leopard as a Cheetah, even though no Cheetah appears in the video.

Question: How many baby bears are there?

MovieChat: I am sorry, I do not have enough information to provide the answer.
Could you please provide me with the number of baby bears in the video? Ours: 2

(b) Animal Counting: This question is particularly challenging because the bears appear infrequently in the video, and the question specifically asks about
“baby bears.” Despite MovieChat analyzing 2048 frames and our model only analyzing 100 frames, our model was able to locate and count the baby bears
accurately.

(c) Determining People’s Relationships: We compare our results with those of MA-LMM, with both models trained on the LVU dataset. Thanks to our
episodic memory compression, our model excels at determining people’s relationships across thousands of frames of interactions.

Figure 11. Qualitative results demonstrating the capabilities of our model compared to MovieChat and MA-LMM across different tasks. (a)
Animal identification shows MovieChat’s confusion between Leopard and Cheetah. (b) Animal counting highlights the challenge of locating
baby bears with limited appearances in the video, where our model outperforms despite fewer frames. (c) Relationship determination
benefits from our episodic memory compression, enabling better identification of relationships over extended interactions.

a dead baby giraffe, predicting “nothing” when the correct
answer is “eaten by hyenas”.

These examples emphasize the need for improved mech-
anisms to aggregate and reason over long-range temporal
dependencies, as well as enhanced capabilities in scene un-
derstanding and event inference.

H.9. How is our approach related to cognitive pro-
cesses?

Our approach to long-form video understanding is inspired
by cognitive processes involving memory and comprehen-
sion. According to the literature on neuroscience [30, 38, 39],
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Arid Landscape Lake and aquatic bird Flies

Landscape Various birds Greenerie Reptile Mountains

Features Extracted by SeTR

Episodes by ECO

A snapshot of the video

Figure 12. Visualization of ECO and SeTR: The top row presents a curated visual summary of the video, showcasing key scenes such as
landscapes, wildlife, and environmental features. The middle row highlights the functionality of SeTR, which extracts semantic features
and clusters frames into thematic groups, including “Landscape,” “Various Birds,” and “Reptiles.” Finally, the bottom row illustrates the
operation of ECO, which segments the video into coherent narrative episodes, such as “Arid Landscape,” “Lake and Aquatic Bird,” and
“Flies.” Together, these modules provide both high-level abstraction and detailed episodic structure for comprehensive video understanding.

Figure 13. Where and when HERMES fail: The top row shows a marine life video where the model fails to recognize underwater scenes.
The bottom row depicts a wildlife documentary where the model struggles with quantitative reasoning and event inference across multiple
frames. These cases highlight limitations in contextual understanding and temporal information integration.
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human cognition involves two primary types of memory:
episodic and semantic. Episodic memory is the ability to
recall specific events or episodes, while semantic memory
refers to the storage of general knowledge and concepts.
These forms of memory are crucial for understanding long-
form narratives, where a coherent understanding arises from
the integration of specific events and overarching themes.

The proposed HERMES model incorporates these cogni-
tive processes through its two main components, ECO and
SeTR. ECO, akin to the function of episodic memory, se-
lectively retains and compresses key events from the video,
allowing the model to form a structured representation of
the narrative as it unfolds. This approach is an oversimpli-
fied abstraction of findings in cognitive neuroscience, which
highlight the role of the hippocampus in the consolidation of
episodic memories [9, 30], and the concept of subjective time
[1] that sees a scene (or a video) not as a series of frames
but as a series of experiences. The hippocampus enables the
organization of temporally distinct experiences into a coher-
ent memory trace, something that we aim to capture with
ECO. Moreover, the sequential processing and aggregation
of information in our model align with the concept of event
segmentation in cognitive psychology [47]. Humans natu-
rally segment continuous experiences into discrete events,
which aids in memory formation and recall.

Meanwhile, SeTR functions similarly to semantic mem-
ory, extracting and reinforcing high-level semantic cues.
This process mirrors how the brain integrates detailed
episodic memories with broader semantic knowledge stored
in the neocortex [2, 23]. Also related is the concept of gist ex-
traction which involves rapidly comprehending the essence
or overall meaning of a scene or situation [26]. This abil-
ity allows humans to quickly understand the context of a
complex scene without processing every detail. Our SeTR
operates similarly by identifying and extracting high-level
semantic cues that provide a concise overview of the scene
and actions.

The integration of these cognitive processes not only
aligns with human-like comprehension but also offers a
framework for efficiently handling the vast and diverse in-
formation present in long-form videos. Significant improve-
ments over existing state-of-the-art models, underscore the
effectiveness of this cognition-inspired approach. While our
model is a oversimplified abstraction of human cognition, it
provides a foundation for exploring more complex cognitive
mechanisms in future work.
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