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Abstract

Video anomaly detection plays a crucial role in au-
tomatically detecting abnormal actions or events from
surveillance video, which can help to protect public safety.
Deep learning techniques have been extensively employed
and achieved excellent anomaly detection results recently.
However, previous image-reconstruction-based models did
not fully exploit foreground object regions for the video
anomaly detection. Some recent works applied pre-trained
object detectors to provide local context in the video surveil-
lance scenario for anomaly detection. Nevertheless, these
methods require prior knowledge of object types for the
anomaly which is somewhat contradictory to the problem
setting of unsupervised anomaly detection. In this paper, we
propose a novel framework based on learning the moving-
object feature prediction based on a convolutional autoen-
coder architecture. We train our anomaly detector to be
aware of moving-object regions in a scene without using
an object detector or requiring prior knowledge of specific
object classes for the anomaly. The appearance and mo-
tion features in moving objects regions provide comprehen-
sive information of moving foreground objects for unsuper-
vised learning of video anomaly detector. Besides, the pro-
posed latent representation learning scheme encourages the
convolutional autoencoder model to learn a more conver-
gent latent representation for normal training data, while
anomalous data exhibits quite different representations. We
also propose a novel anomaly scoring method based on
the feature prediction errors of moving foreground object
regions and the latent representation regularity. Our ex-
perimental results demonstrate that the proposed approach
achieves competitive results compared with SOTA methods
on three public datasets for video anomaly detection.

1. Introduction
Video surveillance has been commonly used for mon-

itoring public safety, while manually inspecting abnormal
events from surveillance videos is a tedious and exhaustive
task. Automatic anomaly detection from surveillance video

(a) Original video frame (b) Moving-object mask

(c) Prediction error (d) Inference result

Figure 1: Demonstration of the overall idea of our moving-
object-aware video anomaly detection system. Our frame-
work focuses on analysis of moving-object regions in a
video, which provides object-level anomaly scoring in addi-
tion to the frame-level anomaly scoring for video anomaly
detection. The inference result in (d) shows the associated
anomaly scores for the moving objects.

is expected to provide a fast and accurate solution, which
has become highly demanded in practice. However, it is
hard to give a clear definition for video anomalies or obtain
a representative dataset for video anomalies for each sce-
nario in practice since they are principally unknown events.
Hence, this makes it very challenging to be solved by rule-
based or supervised-learning-based approaches. Unsuper-
vised anomaly detection approaches using a sample of the
unlabeled data set as training data are most widely applica-
ble for this task.

For the past few years, there has been a considerable
amount of progress in applying deep learning to the unsu-
pervised anomaly detection problem. One typical approach
is to train a convolutional autoencoder (Conv-AE) to learn
regular reconstruction from normal video frames (termed
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“image-reconstruction-based methods” in this paper). The
trained Conv-AE is expected to well describe normal condi-
tions while generating deviations for abnormal events. Nev-
ertheless, these image-reconstruction-based methods failed
to exploit the fact that foreground objects are the most criti-
cal information to analyze for detecting an abnormal event,
thus making them susceptible to background noise. Some
latest works take advantage of the generalized models pre-
trained on large video datasets to provide semantic infor-
mation in a video to their anomaly detection model. These
works aim to lead their anomaly detector focusing on spe-
cific categories of objects in the video scene. Object-centric
methods [10, 2, 3, 5, 4] guide their anomaly detector to
check for specific object regions provided by pre-trained
object detection model. These methods took advantage of
the well-informed pre-trained models, meanwhile checking
straight into the object-level feature to avoid interference
from the background, leading to good results under spe-
cific premises. The one crucial premise for these semantic-
information-based methods is that the anomaly categories
must be included in their pre-trained models.

To fully exploit the idea of determining video anomaly
based on foreground objects, meanwhile properly follow
the unsupervised setting of anomaly detection, we propose
a moving-object feature prediction framework for video
anomaly detection. The proposed anomaly detector is
trained to be aware of moving objects defined by optical
flow feature instead of specific categories of objects. With
the optical flow feature, we can further define foreground-
object regions from the movement characteristics, comput-
ing anomaly scores for each foreground object from the cor-
responding prediction errors. The basic idea of the proposed
video anomaly detection system is illustrated in Figure 1.
Inspired by the recent anomaly detection works [7, 22, 1]
that emphasize regularity on latent representation for nor-
mal conditions, we train an additional variational autoen-
coder (VAE) with the Conv-AE concurrently to enforce the
normal latent representations to be well reconstructed by the
VAE. Eventually, we develop a frame-level anomaly scoring
strategy to provide quantified measure for anomaly detec-
tion and give quantitative comparisons with recent SOTA
methods. Our proposed frame-level scoring strategy con-
sidering moving-object-based feature prediction and latent
representation achieves very competitive results on the three
public benchmark datasets for video anomaly detection.

Our main contributions are summarized as follows:

• We apply optical flow features as moving foreground
object feature descriptors on image space. We train
a convolutional autoencoder model to predict pertinent
moving object information while ignoring meaningless
background noise.

• We propose a training scheme that applies an addi-

tional variational autoencoder to model the normal la-
tent representation of the convolutional autoencoder.

• We develop a novel anomaly scoring strategy. By con-
sidering moving-object feature prediction and latent
representation simultaneously.

• The proposed method achieves competitive results
compared with SOTA methods on three public bench-
mark datasets for video anomaly detection.

The rest of this paper is organized as follows. In section
2, we review some related works for video anomaly detec-
tion. Subsequently, we describe the details of the proposed
moving-object feature prediction framework in section 3.
Then, we give some experimental results and discussion in
section 4. Finally, we conclude the paper in section 5.

2. Related Work

2.1. Image-reconstruction-based methods

Image-reconstruction-based methods usually apply
Conv-AE to reconstruct or predict video frames. The fun-
damental concept is that only normal conditions are seen
during the training process so that the Conv-AE model can
only reconstruct or predict images well for normal samples.
On the contrary, the model reconstructs or predicts poorly
for abnormal data. Thus, the image reconstruction results
can be used to determine if an abnormal event occurs.
Some works consider time factors by using several con-
secutive frames to predict the characteristics of subsequent
frames [9, 14]. Besides, [21, 23, 14] computed optical flow
to represent the motion features. Some methods suggest
the use of adversarial learning [8] to help the generator to
produce more realistic images [23, 6, 14].

Frame generation in these methods usually reconstructs
the entire image scene and evaluates anomaly score from
the reconstruction error of the whole image. This approach
often takes the unimportant background noise into consid-
eration. To alleviate the problem due to background noise,
our proposed method is to predict moving foreground fea-
tures without influence by background.

2.2. Semantic-information-based methods

Anomaly detection training is usually based on a short
amount of normal data, yet surveillance videos contain
highly complex and rich information. As deep learning
models have demonstrated mature results in various com-
puter vision applications, transfer-learning-based methods
have been adopted. These works [18, 20, 10, 2, 3, 5, 4]
proposed to use sophisticated models pre-trained on the
large video datasets to provide semantic information of
the videos. Georgescu et al. [4] exploited the pre-trained
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YOLOv3 [24] to guide their anomaly detector to learn mul-
tiple proxy tasks in the bonding boxes. The regularity of
human pose also provides an important cue for the video
anomaly detection task [20, 18]. Morais et al. [20] first
extracted human skeleton points from video frames by a
pre-trained human pose estimation model. Therefore, the
corresponding skeleton points of successive frames are con-
nected into dynamic skeleton features, and abnormal human
events are detected by checking the regularity of skeleton
trajectories.

This type of approach takes advantage of some inter-
pretable information provided by some pre-trained models;
meanwhile, it filters out some redundant background infor-
mation in the video scene for the anomaly detector model
in advance. However, they require a crucial premise that
anomaly categories must be included in their pre-trained
models. In practical, which classes should be selected for
the object detector to detect is tricky. Strong prior knowl-
edge of anomaly categories makes them contradictory to
unsupervised tasks. To make the anomaly categories keep-
ing “unknown” in our unsupervised learning framework, we
choose to define the foreground region by the movement
feature in the scene.

2.3. Latent-representation-based methods

Although CNN autoencoder has been widely used in the
image-reconstruction-based methods, some observed good
reconstruction results for anomalous cases due to the pow-
erful representation capacity of the CNN model. Since the
model may not always induce large reconstruction errors
for anomalous samples, this leads to missed anomaly detec-
tion. To prevent this, some recent works [7, 22, 1] proposed
to restrict divergence of latent representations in autoen-
coder during the training process, encouraging close bind-
ing for latent representations of normal samples. Park et
al. [22] applied a memory module to memorize normal pat-
terns in the latent space for Conv-AE. For their update strat-
egy of the memory, they record prototypical items of normal
data. Counting similarity between prototypical items and
encoded latent queries helps to identify anomalies. Chang
et al. [1] exploited the deep k-means clustering to force nor-
mal latent representation to be clustered.

Even though the nonlinearity of neural network models
makes them less interpretable, the highly complex mod-
els normally provide better solutions to many unsupervised
learning problems. The traditional modeling approach may
not necessarily provide the best solution to address the high-
level coding embedding, such as latent queries in Conv-
AE. We apply a similar concept in image-reconstruction-
based anomaly detection methods onto the latent query do-
main. This is accomplished by applying an additional vari-
ational autoencoder to learn the reconstruction of normal
latent queries of Conv-AE in the training process to restrict

its latent representation for normal cases.

3. Proposed Method

We implement our moving-foreground-object-aware
concept with a moving-foreground-object feature predic-
tion framework. Our framework contains two regular-
ity models trained from normal videos: a foreground-
object-aware convolutional autoencoder (FOA-CAE) and
a latent-query-restricting variational autoencoder (LQR-
VAE). FOA-CAE encodes consecutive video frames, and
then predicts foreground-object features in the future frame,
while LQR-VAE restricts manifold divergence of FOA-
CAE’s normal latent representation. For detecting anoma-
lous events in videos, we design an anomaly scoring strat-
egy with focus on moving object region and latent repre-
sentation. Figure 2 illustrates an overview of the proposed
framework. The following subsections will describe details
for the framework.

3.1. Moving-foreground-object feature prediction

To prevent the regularity learning in image space from
being influenced by the color bias, we convert the original
RGB frame images I1, I2, ..., It to resized grayscale images
X1, X2, ..., Xt, where t represents each time step in a video.
After concatenating 3 consecutive pre-processed images
Xt−2, Xt−1, Xt on temporal dimension, we obtain a 4D
tensorXt−2,t−1,t with size 128×192×1×3 ofH×W×C×
T . With temporal information implied tensor Xt−2,t−1,t as
the input of our FOA-CAE model, it is trained to predict two
future foreground featuresAt+1,Mt+1, which represent ap-
pearance and motion information for moving objects, re-
spectively. For the motion feature Mt+1, we first feed It,
It+1, and It+2 into a pre-trained optical flow prediction
model SelFlow [13] and resize the visualization result of op-
tical flow output to obtain the motion feature Mt+1, which
is an RGB image. The motion information is implied in the
color of Mt+1. To be more specific, saturation and value
imply the magnitude of pixel movement, and hue states the
angle of movement direction. Regarding the appearance
feature At+1, motion feature Mt+1 is first adopted to pro-
vide moving object region. By applying thresholding on the
motion feature Mt+1, we can obtain a binary mask that dis-
tinguishes foreground from background regions in an image
by the movement between two consecutive frames. Then
we multiply the binary motion mask withXt+1 pixel-wisely
and copy three times of the multiplied result image on chan-
nel dimension to obtain the foreground appearance feature
At+1 with size 128× 192× 3 of H ×W × C. Eventually,
we get the appearance featureAt+1 which preserves the ap-
pearance details for foreground objects while ignoring the
meaningless background appearance in the scene.
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Figure 2: Proposed moving-foreground-object feature prediction framework.

3.2. FOA-CAE

U-Net [25] architecture has been extensively used on
image-reconstruction-based methods [23, 14, 21]. Skip
connections of U-Net provide the decoder with the feature
maps from the encoder which contains low-level informa-
tion of input and enhance generation ability by shortcuts.
Our approach tends to take advantage of the encoding abil-
ity of the encoder rather than the generation capability of
the model. To avoid weakening encoding ability caused
by shortcut mechanism of skip connections [22], we ex-
ploit relatively simple Conv-AE as our main model archi-
tecture for FOA-CAE. There is one encoder for encoding
Xt−2,t−1,t, two decoders for outputting At+1 and Mt+1,
respectively.

We follow some philosophy of designing the basic Conv-
AE architecture from [21] yet lessening nearly half of
the model capacity from their model. Moreover, we fur-
ther ameliorate our model with self-attention mechanism to
make it more suitable to be moving-object-aware.

The basic architecture of the encoder consists of four
convolution blocks (Conv-block). Each Conv-block con-
tains three layers: 3 × 3 convolution with stride 2, batch-
normalization, and leakyReLU activation. There are two
primary modifications for the encoder. For the first modifi-
cation, before four basic Conv-block, there is one 3D con-
volution layer to capture the spatiotemporal correlations.
Then, we convert the 4D tensor to 3D feature maps by ap-
plying average pooling on the temporal dimension; this al-
lows the 2D convolution layer to follow, saving the overall
space and time cost of FOA-CAE. A Conv-block without
striding is attached to enhance the diversity of the feature

extraction in low-level space. The other modification is that
we attach the self-attention module from [27] on the middle
two Conv-blocks of the basic encoder structure. The in-
formation of dependencies at different positions provided
by the adaptive attention map bridges long-range depen-
dencies for any two positions of the feature maps with the
non-linear transformation. This alleviates the limitation of
convolutional layers’ nodes only computing from a small
local neighborhood of nodes, helping FOA-CAE better un-
derstand long-range information in a scene.

The decoders have a relatively simple structure with
four deconvolution blocks (DeConv-block). Each DeConv-
block contains four layers: 3× 3 deconvolution with stride
2, batch-normalization, ReLU activation, and dropout. One
deconvolution layer without striding with 3 channels is at-
tached to the decoder’s end, so that each decoder outputs
one RGB image, Ât+1 and M̂t+1. To guide the FOA-
CAE to learn predicting normal future foreground feature
images, we minimize the l2 distance of pixel intensities
between predicted feature images and the corresponding
ground truth images:{

Lappearance = ‖At+1 − Ât+1‖22
Lmotion = ‖Mt+1 − M̂t+1‖22

(1)

The image prediction loss is defined as the weighted sum-
mation of two losses given above:

Limage = λaLappearance + λmLmotion (2)

3.3. LQR-VAE

We apply VAE instead of AE to model the normal la-
tent query of FOA-CAE because VAE encodes input as
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distributions rather than vectors. This benefits our frame-
work by applying fewer parameters while preventing over-
fitting during modeling plenty of high-level queries. A
query map Qt of size H ×W ×C extracted by the encoder
of FOA-CAE is disassembled to queries q1t , q

2
t , ..., q

K
t with

size 1 × 1 × C, and the number of queries K = H ×W ,
where K = 96 in our implementation. Similar concept
to image-reconstruction-based anomaly detection methods,
VAE learns to reconstruct the input query without seeing
abnormal samples during the training progress, thus it mod-
els normality. We apply l2 loss with KL-divergence term
provided by the original VAE paper [12] as our query loss:

Lquery =
1

K

K∑
k=1

(‖qkt − q̂kt ‖22

− 1

2
(1 + log((σk

t )
2)− (µk

t )
2 − (σk

t )
2))

(3)
To restrict the encoded latent query divergence in FOA-
CAE, we train the low capability LQR-VAE with FOA-
CAE, simultaneously. Instead of simply inputting the orig-
inal query map Qt to the decoders of FOA-CAE, we in-
put the query map Q̃t assembled by the averaged queries
q̃1t , q̃

2
t , ..., q̃

K
t of original queries q1t , q

2
t , ..., q

K
t and the re-

constructed queries q̂1t , q̂
2
t , ..., q̂

K
t . The two models share

one single optimizer for end-to-end training, and the objec-
tive function can be formulated as:

L = λiLimage + λqLquery (4)

3.4. Anomaly scoring strategy

Most previous image-reconstruction-based methods
evaluate the model generated result by, e.g., peak signal-to-
noise ratio, structural similarity, or mean squared error of
the whole image for frame-level anomaly scoring. Nguyen
et al. [21] proposed a patch-based scheme of anomaly score
estimation to reduce the effect of noise. To ignore the ir-
relevant background noise and to consider the importance
of normalization for each moving object more precisely, we
propose a novel anomaly scoring strategy highlighting mov-
ing object regions.

Unlike subordinating the specific object categories’ loca-
tion produced by the object detector model in object-centric
methods, we define the moving foreground object regions
by the reference of motion feature. We first apply thresh-
olding on Mt+1 to obtain the binary motion mask from the
motion feature image. Then, we exploit the connected com-
ponent algorithm [26] on the motion mask to separate dif-
ferent components and filter out the components with tiny
areas to obtain the moving object mask Ot+1 for the frame
scene. With the moving object maskOt+1, we can compute

partial scores for each moving object o ∈ Ot+1 as follows:Sappearance(o) =
√

1
|o|
∑

(i,j)∈o(Ai,j − Âi,j)2

Smotion(o) =
√

1
|o|
∑

(i,j)∈o(Mi,j − M̂i,j)2
(5)

where o denotes a moving object region and |o| is its num-
ber of pixels. Without carefully selecting weights between
partial scores, we multiply them directly as our object-level
anomaly score:

Sobject(o) = Sappearance(o)× Smotion(o) (6)

For frame-level image prediction anomaly score, we take
the highest object-level anomaly score as the representative
score for the frame, i.e.

Simage = max
o∈Ot+1

Sobject(o) (7)

For latent code reconstruction anomaly score, we con-
sider root mean squared error and cosine-distance between
Qt and reconstructed Q̂t:

Squery =

√√√√ 1

K

K∑
k=1

(qtk − q̂tk)2 +
1

K

K∑
k=1

(1− Cos(qtk, q̂tk))

(8)
For final frame-level anomaly score, we multiply the nor-

malized frame-level image prediction anomaly score with
normalized latent code reconstruction anomaly score:

St = g(Simage)× g(Squery) (9)

Most previous video anomaly detection methods compute
normalized scores for each video defined by the standard
video datasets. We argue that it is ambiguous to de-
fine different videos in real application but feasible to de-
fine camera scenes, so we normalize the scores by cam-
era scenes. Function g(.) denotes the min-max normaliza-
tion over whole frames in a camera scene: Considering the
characteristics of continuity for events in the video, we ap-
ply Gaussian filtering for temporally smoothing the frame-
level anomaly scores in the final stage. The scores assessed
from frames containing abnormal events are expected to be
higher than normal ones.

4. Experiments
4.1. Datasets

We perform our experiments on the three most widely
used public benchmark datasets; namely, UCSD Ped2
dataset [17], CUHK Avenue dataset [15], and ShanghaiTech
dataset [16]. These datasets are set for unsupervised
anomaly detection problems with videos captured by static
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surveillance cameras in the campus. Each dataset has its
own characteristics.

UCSD Ped2 dataset includes 16 training and 12 testing
videos. Grayscale and relatively low-resolution bird’s-eye
view videos of a crowded sidewalk are provided. The ab-
normal events are mostly about transportation-related vio-
lations on a sidewalk, such as cycling and skateboarding.

CUHK Avenue dataset contains 16 training and 21 test-
ing videos. The dataset depicts an eye-level shot screen in
front of a subway station. The irregular events are human
behaviors like running, doing exercise, and throwing stuff.

ShanghaiTech dataset contains 330 training and 107 test-
ing videos with 13 different scenes. Different camera angles
and shots in different scenes, as well as diverse anomaly
event types, make it considered one of the most challenging
datasets among the three public datasets commonly used for
video anomaly detection research.

4.2. Implementation details

We implement our work by using Tensorflow 2.0 frame-
work and Python with an NVIDIA RTX 2080 Ti GPU. All
images are normalized to the range from 0 to 1. We tend
to find a more universal solution for all datasets, so most
of the hyperparameter settings are the same for 3 datasets.
The FOA-CAE model and LQR-VAE model share one sin-
gle Adam optimizer [11] with learning rate set 2 × 10−4,
β1 = 0.9, β2 = 0.999, and batch size set 32 for end-to-end
training. For training loss, the weights are set to λa = 0.5,
λm = 0.5, and λi = 1 for three datasets. For the weight-
ing of query loss λq are set 0.5, 0.005, 0.0005 for UCSD
Ped2 dataset, CUHK Avenue dataset, and ShanghaiTech
dataset, respectively since the diversity difference between
these three datasets. Training epochs are set differently for
each dataset since different abundance for the datasets: 200
for UCSD Ped2 dataset, 80 for CUHK Avenue dataset, and
8 for ShanghaiTech dataset. For the pre-trained optical flow
prediction model, we apply the SelFlow model [13], which
was pre-trained on the KITTI 2015 dataset [19]. The sys-
tem’s inference time is 16 fps (detailed in the supplementary
materials).

4.3. Comparison with the state-of-the-art

To evaluate our method, we measure frame-level area
under curve (AUC) of the receiver operating characteristic
(ROC) curve, a standard metric for video anomaly detec-
tion (detailed in the supplementary materials). Quantitative
results of our method and the state-of-the-art methods for
video anomaly detection are shown in Table 1. We use dif-
ferent scopes to separate different prior knowledge condi-
tion of anomaly type been utilized in the method. Methods
in the “Object” scope outperform other methods via strong
local information. By being aware of moving object fea-
tures, our proposed method achieves the best result in the

Method UCSD CUHK Shanghai

Po
se Morais et al. [20] - 86.3 73.3

Markovitz et al. [18] - - 76.1

O
bj

ec
t Ionescu et al. [10] 94.3 87.4 78.7

Doshi et al. [2], [3] 97.8 86.4 71.6
Georgescu et al. [4] 97.5 91.5 82.4
Georgescu et al. [5] 98.7 92.3 82.7

Im
ag

e

Conv2D-AE [9] 85.0 80.0 60.9
TSC [16] 91.0 80.6 67.9
StackRNN [16] 92.2 81.7 68.0
Liu et al. [14] 95.4 85.1 72.8
Nguyen et al. [21] 96.2 86.9 -
MemAE [7] 94.1 83.3 71.2
Mem-guide [22] 97.0 88.5 70.5
Cluster-drive [1] 96.5 86.0 73.3
Ours 97.7 87.8 75.6

Table 1: Quantitative comparison with SOTA methods for
video anomaly detection. Frame-level AUC scores (%) on
UCSD Ped2, CUHK Avenue, and ShanghaiTech dataset.

’Image’ scope on UCSD Ped2 and ShanghaiTech datasets,
gaining 0.7% and 2.3% on UCSD Ped2 and ShanghaiTech,
respectively. And 87.8% AUC score on Avenue dataset is
also a competitive performance. Worth mention that Shang-
haiTech is the most challenging dataset that contains videos
with variant camera scenes. Instead of training indepen-
dent FOA-CAE and LQR-VAE for each scene, we train the
general model for all 13 scenes and achieve the best per-
formance comparing with other state-of-the-art methods.
The adaptability to different scenes demonstrates that our
method is robust against background appearance variations.

4.4. Qualitative results

Figure 3 depicts some qualitative experimental results on
the three datasets. We can see from the predicted M̂ that
our FOA-CAE can well predict the normal objects while
leading to large predicting errors for the abnormal objects.
The proposed model can detect a variety of anomaly event
types. In the figure, the prediction errors associated with
the moving object contours demonstrate that the proposed
model can accurately detect the anomalous objects from the
videos.

4.5. Ablation study

We evaluate different components in our framework on
CUHK Avenue dataset to observe each component’s con-
tribution to the model performance. Table 2 shows the
AUC score for the quantitative ablation study. The first two
rows show the results for one-stream autoencoder trained to
predict appearance and motion, respectively, that promis-
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(a) (b) (c) (d) (e) (f)

Figure 3: Qualitative results on UCSD Ped2 (a), CUHK Avenue (b)(c), and ShanghaiTech (d)-(f). Each example displays
4 images: the original video frame, pseudo ground truth motion feature M , predicted M̂ , and the corresponding prediction
error (from top to bottom).The anomaly events are (a) unexpected bicycle and truck on the sidewalk, (b) throwing papers, (c)
jumping, (d) chasing, (e) falling down, and (f) exhibition drill.

ing results are produced by both settings. The third row
shows that the two-stream autoencoder predicting both ap-
pearance and motion feature provides better performance
since more information is used to describe the moving fore-
ground objects. The fourth to sixth rows demonstrate im-
proved accuracy after including LQR-VAE to the settings
for the first three rows. Although the result without LQR-
VAE is already outstanding on the two-stream framework,
it gains 0.7% AUC improvement after applying LQR-VAE,
which indicates the effectiveness of the LQR-VAE mod-
ule. When training the complete framework but only con-
sidering Squery for frame-level anomaly score (the sev-
enth row), it can achieve an 80.2% AUC score, which
again proves the reliability of the proposed LQR-VAE for
anomaly detection. We also test to exchange the latent-
query-restricting variational autoencoder (LQR-VAE) to an
autoencoder model (named LQR-AE on the last two rows).
The experimental result shows better performance for the
VAE model in our latent representation learning task.

5. Conclusions

Since foreground-object information plays an important
role in detecting video anomaly events, we focus on how
to incorporate moving-foreground-object information into
the video anomaly detection framework in this paper. With
optical flow information of moving foreground objects pro-
vided for our proposed FOA-CEA’s training, it learns bet-
ter descriptions of normal events from the videos. We

Appearance Motion LQR-VAE LQR-AE AUC
3 7 7 7 83.1%
7 3 7 7 84.9%
3 3 7 7 87.0%
3 7 3 7 85.2%
7 3 3 7 85.9%
3 3 3 7 87.7%
s s 3 7 80.2%
3 3 7 3 86.4%
s s 7 3 78.4%

Table 2: The evaluation of different components in our
framework on the CUHK Avenue dataset. s denotes the
corresponding score is not used for the final scoring.

also present an effective unsupervised training scheme that
leverages the proposed LQR-VAE module to learn the nor-
mal representations for the normal latent queries of a Conv-
AE model. In addition, we developed a novel frame-
level scoring strategy that considers both latent representa-
tion regularity and moving foreground objects based on an
object-level scoring scheme. Experimental results demon-
strate that the proposed method can achieve SOTA perfor-
mance on the three primary benchmark public datasets for
unsupervised video anomaly detection. The inference time
of our proposed framework is about 16 frames per second,
which is reasonable for practical application.
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