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Abstract. Detecting objects in 3D space plays an important role in
scene understanding for real applications, such as autonomous driving
and mobile robot navigation. Many image-based methods have been
proposed due to the high cost of LiDAR. However, monocular images
are lack of depth information and difficult to detect objects with oc-
clusion. In this paper, we propose to integrate 2D/3D object detection
and 3D motion estimation for consecutive monocular images to overcome
these problems. Additionally, we estimate the relative motion of the ob-
ject between frames to reconstruct the scene in the previous timestamp.
To learn motion estimation from unlabeled data, we propose an unsu-
pervised motion loss which learns 3D motion estimation from consecu-
tive images. Our experiments on KITTI dataset show that the proposed
method outperforms the state-of-the-art methods for 3D Pedestrian and
Cyclist detection and achieves competitive results for 3D Car detection.

1 Introduction

Detecting objects and their motions in 3D space plays an important role in
scene understanding for applications such as autonomous driving[1] and mobile
robot navigation[2]. Previous methods[3] on 3D object detection rely heavily on
LiDAR device which provides precise depth information. However, due to the
high cost of LiDAR, many monocular image-based approaches were proposed.
Specifically, image-based approaches can be categorized into image-only[4] and
pseudo-LiDAR methods[5]. The image-only methods typically leverage geomet-
ric constraints such as object shape and key points. Pseudo-LiDAR approaches
relied on external sub-networks such as state-of-the-art depth prediction network
to obtain depth cues. The drawback of these approaches is the upper-bound for
the framework limited by the additional network due to the persistent output
noise. On the other hand, unsupervised depth prediction methods[6] using se-
quential monocular frames have achieved state-of-the-art performance compared
to the supervised approaches, which makes it possible to solve the core problem
in 3D object detection for the lack of depth information. Furthermore, due to the
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Fig. 1. The overall architecture of the proposed network that integrates 2D/3D object
detection and 3D object motion estimation for multi-frame monocular images. The
outputs are for current frame.

single view observation, monocular image-based approaches typically fail to de-
tect objects with occlusion and truncation, which may occur in real-world driving
scenarios. Therefore, the lack of depth information and occlusion cause large per-
formance gap between LiDAR-based methods and monocular approaches, thus
making 3D object detection from monocular images still a challenging problem.

The 3D object detection aims to classify the object category and estimate 3D
bounding boxes of physical objects. Specifically, for each detected 3D bounding
box, 3D centroid coordinates (x, y, z), orientation (rotation y) and sizes (l,h,w)
are given according to the camera coordinate system. Particularly, monocular
image-based approaches only take monocular frames as input instead of 3D point
cloud data, and the calibration parameters for each image are usually provided.

In this work, we focus on addressing two key challenges in monocular 3D
object detection. First, depth prediction is considerably the most challenging
problem in monocular image-only 3D object detection. Previous approaches typ-
ically use projection geometric constraint[7], prior knowledge[4][8] or external
pre-trained depth estimation network[9] to solve this problem. In addition, oc-
clusion or truncation often occurs in driving scenes, especially in the scenarios
with lots of cars on the road. Thus, an accurate 3D object detector is highly
demanded for real-world autonomous driving applications.

Motivating by [6], which learns depth prediction from unlabeled monocu-
lar videos, we propose another way to address the above problems by using
sequential frames from a single monocular camera. Specifically, we use consec-
utive frames to detect objects in 3D space. To utilize consecutive frames, we
not only predict 3D bounding boxes, but also their 3D relative motions to re-
construct their 3D positions in the previous timestamp. Thus, we can recover
depth cues from multi-view geometric constraints. Overall, we propose a novel
three-streamed convolutional neural network based on [4], which takes consec-
utive frames and an estimated depth map as inputs and additionally estimates
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3D relative motion for each object. The overall architecture of the proposed
integrated network is depicted in figure 1.

To better capture object motion between consecutive frames, we adopt chan-
nel attention mechanism[10] in our proposed network. Due to the lack of labels
in previous frames, unsupervised training is adopted to learn 3D object motion.
Notably, we propose a motion loss which projects the 3D object onto the current
frame and the previous frame according to the estimated depth and motion, and
then calculate the absolute error and structural similarity error[11] between two
projected patches.

The main contributions of this work include: (1) We propose a three-streamed
network which combines the local features and motion features to address the
depth estimation problem in 3D object detection. (2) Channel attention is ap-
plied to capture motion features between consecutive frames. (3) Moreover, we
additionally estimate the relative 3D motions for objects in 3D space to help us
better understand the surroundings in real-world driving scenes. (4) To estimate
3D motions, we propose a unsupervised motion loss which projects the 3D object
onto both current and previous frames, and then computes the structure similar-
ity error. In the experimental evaluation, we show that our method outperforms
the state-of-the-art methods in both 3D Pedestrian and Cyclist detection and
achieves competitive results for 3D Car detection on the KITTI[12] dataset.

2 Related Work

2.1 LiDAR-based 3D Object Detection

Typically, LiDAR-based 3D object detection can be categorized into point-based
and voxel-based according to the feature representations. Zhou et al. [13] divided
point clouds into equally spaced 3D voxels and transform a group of points within
each voxel into a unified feature representation. In [14], Wang et al. implemented
FPN technique on voxel-based networks. On the other hand, PointNets[15] can
directly extract features from raw point clouds, which leads to many point-based
approaches being proposed. Qi et al. [16] leveraged mature 2D object detectors
and extracted point clouds from 2D detection frustum. In [3], Shi et al. proposed
to segment point clouds into foreground and background and generate high-
quality 3D proposals. The drawbacks of LiDAR are its high cost and sensitivity
to adverse weather conditions, which limit its application to real-world scenarios.

2.2 Pseudo LiDAR-based 3D Object Detection

Ma et al. [17] first transformed the input data from 2D image plane to 3D point
clouds space for a better input representation and embedded the complementary
RGB cue into the generated point clouds representation. In [18], Wang et al.

converted image-based depth maps to pseudo-LiDAR, which can apply different
existing LiDAR-based detection algorithms. Following the pipeline of two-stage
3D detection algorithms, Weng et al. [19] detected 2D object proposals in the
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input image and extracted a point cloud frustum from the pseudo-LiDAR for
each proposal. However, pseudo-LiDAR relies heavily on the additional predicted
depth map, which limits the upper bound of the performance.

2.3 Image-based Monocular 3D Object Detection

Liu et al. [20] predicted a 3D bounding box for each detected object by com-
bining a single keypoint estimate with regressed 3D variables and proposed a
multi-step disentangling approach for constructing the 3D bounding box, which
significantly improves both training convergence and detection accuracy. Qin et

al. [21] proposed a unified network composed of four task-specific subnetworks,
responsible for 2D object detection, instance depth estimation (IDE), 3D local-
ization and local corner regression. In [4], Brazil et al. proposed 2D-3D anchor
architecture for region proposal network, which initializes all anchors with prior
statistics for each of its 3D parameters. Additionally, depth-aware convolutional
layers are proposed to better capture depth information. To increase 2D-3D con-
sistency and achieve better orientation prediction, a post-optimization algorithm
is applied after region proposal network. Ding et al. [9] indicated that conven-
tional 2D convolutions are unsuitable for 3D object detection due to the failed
capture of local object and its scale information. Therefore, a new local convolu-
tional network (LCN), termed Depth-guided Dynamic-Depthwise-Dilated LCN,
was proposed, where the filters and their receptive fields can be automatically
learned from image-based depth maps, making different pixels of different im-
ages have different filters. However, single 2D image can not fully represent the
3D structure of each object and fail to restore the accurate 3D information.

In this paper, we use consecutive monocular images to recover depth infor-
mation through multi-view geometric constraints. To reconstruct the previous
scene, we not only predict 3D bounding box for each object but also predict its
3D relative motion. In addition, we use channel attention mechanism to capture
motion information between consecutive frames. Notably, we do not need extra
labels to train the estimation of relative object motions. The motion is trained
through unsupervised learning.

3 Proposed Method

As a multi-class 3D object detector, the proposed network is comprised of three
key components: a backbone, an attention module and a multi-class detection
head. Following [9], we apply DORN[22] to generate our depth maps. Fig. 1
illustrates the overall architecture of the proposed network. First, our network
takes two consecutive RGB frames and an estimated depth map of the current
frame as inputs. Then, the features are concatenated along the channel dimen-
sion after the backbone feature extraction. The channel attention mechanism is
applied after the feature concatenation. Last, the attention module is followed
by a multi-class detection head. Details of the three components are described
below.
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Fig. 2. Illustration of channel attention block

3.1 Backbone

To better utilize previous frames and depth maps, we design the backbone with a
three-branch network. The first two branches are the RGB images feature extrac-
tion networks with shared weights for the previous frame and current frame. The
third branch is the depth feature extraction network which takes the estimated
depth map of the current image as input. After the feature extraction, these
three feature maps are merged via concatenating along the channel dimension.
Inspired by [9], the backbone of the feature extraction network is ResNet-50[23]
without the FC and average pooling layers. The all subsequent convolutional
layers in block4 are replaced by dilated convolutional layers (the dilation rate is
2) to obtain a larger receptive field.

3.2 Attention Module

Attention mechanism helps the neural network to highlight distinctive features.
Consecutive frames contain redundant information such as background in both
spatial and temporal dimensions, which should not be treated as equally im-
portant in our detection network. In addition, attention mechanism allows our
network to focus on object motions and bring out better depth reconstruction
effects. Thus, we adopt the channel attention[10] mechanism to predict relative
object motion and aggregate more robust features in consecutive frames. The
output of the attention module can be considered as the weighted sum of the
feature maps along the channel dimension.

The backbone features are followed by three residual groups[10], each of
which consists of 12 residual attention blocks, having totally 36 channel attention
blocks. Fig. 2 illustrates the architecture of the channel attention block. First,
global average pooling is applied on the input feature map to aggregate the
statistics of each channel. Then, we used two 1x1 convolutional layers to capture
the inter-channel relationship. To make sure the weights are in the range between
0 and 1, sigmoid is applied. The output of channel attention block is calculated
as an element-wise product of the input feature F and att(Fc) along the channel
dimension.
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3.3 Multi-Class Detection Head

Inspired by [9, 4], the proposed framework is based on the region proposal net-
work (RPN) with shared 2D-3D anchor boxes. The region proposal network
locates the predefined anchors at every spatial location of an image and gener-
ates proposals where the object matches the templates of the predefined anchors.
Then, the parameters of the estimated objects are regressed from the generated
proposals.

Formulation: The input feature maps of our detection head has a network
stride factor of 16 to the input image. Following the practice, the 3D-to-2D
projection matrix for each image is given both at training and test time. The
projection matrix P ∈ R

3x4 can be written as:
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where [x, y, z]3D denotes the 3D point in camera coordinates, and [x, y]P denotes
the projected 2D point of the 3D point in image coordinates.

Let us denote na to be the number of anchors, nc the number of classes, h
and w the height and width of the input feature maps, respectively. The output
represents the anchor-based transformation. Our detection head predicts nc+14
parameters per anchor for each position (i, j) in the input feature maps as:
c, [tx, ty, tw, th]2D, [tx, ty]P ,
[tw, th, tl, tz, tα]3D, [tx, ty, tz]motion , where c denotes the confidence score of each
class, and [tx, ty, tw, th]2D is the estimated 2D box, [tx, ty]P denotes the projected
2D point of the 3D object center, [tw, th, tl, tz, tα]3D denotes the estimated 3D
shape, depth and rotation, [tx, ty, tz]motion denotes the 3D relative motion of the
object between two frames in camera coordinates. The total size of the output
is w × h× na × (14 + nc).

2D-3D Anchor: We utilize our 2D anchors with 3D parameters. Specifically,
the 2D-3D anchors are defined on the 2D space. For each anchor, the default
values of the 3D parameters are the mean statistics calculated from the training
dataset as the corresponding priors. A template anchor is defined using pa-
rameters of both 2D and 3D spaces: [x, y, w, h]2D, [x, y]P , [w, h, l, z, α]3D, where
[x, y, w, h]2D denotes the 2D box, [x, y]P denotes the projected 3D center in im-
age coordinates, [w, h, l]3D denotes the shape of the 3D box, z3D denotes the
depth, and α3D denotes the observation viewing angle.

For 2D anchors, we use 12 anchor scales ranging from 30 to 400 pixels and
3 ratios (0.5, 1.0, 1.5) to define our total 36 anchors for each cell in the output
feature maps. Note that [x, y]2D and [x, y]P share the same anchor parameters.
To calculate the default priors for the 3D parameters, we project all 3D ground
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truth boxes to the 2D space. Then, for each projected box, we assign it to
the 2D anchors whose intersection over union (IoU) with it are greater than
0.5. Afterwards, the 3D parameters [w, h, l, z, α]3D are the statistics across all
matching 3D ground truth boxes.

Motion Scale Parameter: For the relative object motion, since the 2D con-
volution is a spatially-invariant operation and does not consider the depth di-
mension, it is difficult for convolutional kernels to predict 3D object motions
between frames. On the other hand, due to the perspective projection, the mov-
ing distance for an object in the monocular view would be different.

To address these problems, we predefine our motion scale parameter smotion

for each anchor based on its depth prior. Specifically, the motion scale parame-
ter is applied to the estimated relative object motion to obtain the final object
motion in the 3D space. The transformation is further detailed in Data Trans-
formation. Generally, the anchor with the larger depth prior has larger motion
scale parameter. To calculate the motion scale parameter, we first define two
fixed points in image coordinates and back-project these two points from im-
age coordinates to camera coordinates based on the depth prior of each anchor.
Then, we calculate the distance between the two points in the 3D space. We
thus define a motion scale parameter for each anchor based on the ratio of its
distance difference in the 3D space to the smallest one among all anchors.

Data Transformation: The output of our network represents the anchor-based
transformation. Following [4], the data transformation is applied to obtain the
final results:

[x′, y′]2D = [x, y]2D + [tx, ty]2D · [w, h]2D

[w′, h′]2D = [w, h]2D · exp([tw, th]2D)

[x′, y′]P = [x, y]P + [tx, ty]P · [w, h]2D

[w′, h′, l′]3D = [w, h, l]3D · exp([tw, th, tl]3D)

[z′, α′]3D = [z, α]3D + [tz, tα]3D

[x′, y′, z′]motion = [smotion, 1, smotion] · [tx, ty, tz]motion,

(2)

where [∗′] denotes the transformed parameter, [∗] denotes the parameter of the
predefined anchor, smotion denotes the motion scale parameter, [t∗] is the output
of our network. Notably, since the difference in vertical motion of an object is
usually small, the motion scale parameter is applied to the horizontal and depth
axes in camera coordinates.

3.4 Loss Function

The loss of our network is formed as a multi-task learning task, which contains
a classification loss Lclass, a 2D box regression loss L2D, a 3D box regression
loss L3D and a relative object motion regression loss Lmotion. Let b′2D denote



8 Cheng and Lai

Fig. 3. Illustration of motion loss

[x′, y′, w′, h′]2D, b′3D denote [x′, y′]P and [w′, h′, l′, z′, α′]3D. Following [24], to

generate the ground truth target b̂2D, b̂3D for each anchor, we check if any ground
truth 2D box matches the predefined 2D anchors with at least 0.5 IoU. We thus
define the target of the anchor with the best matching ground truth.
For the classification loss, we employ the cross-entropy loss:

Lclass = −log(softmax(c)). (3)

For 2D box, we use the negative logistic IoU loss for transformed b′2D:

L2D = −log(IoU(b′2D, b̂2D)). (4)

We use Smooth L1 loss for each transformed parameter in b′3D:

L3D = SmoothL1(b′3D, b̂3D). (5)

For the target of relative 3D object motion, due to the lack of labels, we
adopt an unsupervised learning mechanism to learn 3D object relative motion
in camera coordinates. As shown in Fig. 3, for each foreground anchor, we project
the target 3D bounding box onto the image in the current timestamp to obtain a
2D image patch ˆpatchcurr. Then, we shift the estimated 3D box with estimated
3D relative motion to reconstruct the object location in the previous timestamp,
and obtain another 2D patch patch′

prev through 3D-to-2D projection. We finally
calculate the SSIM loss and the L1 loss between the two patches to supervise
the motion learning.
The motion loss Lmotion is denoted as:

Lmotion = SSIM( ˆpatchcurr, patch
′

prev) + L1( ˆpatchcurr, patch
′

prev). (6)

Overall, the weighted loss of our multi-task network is defined as:

L = λ1Lclass + λ2L2D + L3D + λ3Lmotion. (7)
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4 Experimental Results

4.1 Dataset

KITTI: The KITTI[12] dataset is a widely used autonomous driving dataset,
which provides the 3D object detection and the bird’s eye view (BEV) bench-
marks for 3D localization evaluation. In BEV task evaluation, all 3D boxes are
projected to the ground plane, and 2D object detection is applied to compute
the evaluation results. The official dataset consists of 7,481 training samples and
7,518 test samples, including images, corresponding point clouds, 3 temporally
preceding frames, camera calibration matrices, and 2D-3D annotations for three
object classes: Car, Pedestrian, and Cyclist. For each object in annotations, one
of the three difficulty levels (easy, moderate, hard) is given based on the occlusion
and truncation levels of the object.

Since the annotations of the official test dataset are not available, we split
the training dataset into a training set and a validation set described in [25] for
comprehensive evaluation. The split renders 3,712 training and 3,769 validation

samples, and avoids overlapping sequences in both sets.

4.2 Evaluation Metrics

Following [12], for each difficulty level and class, we compute the precision-recall
curve and average precision (AP) for evaluation with IoU threshold 0.7 (Car) and
0.5 (Pedestrian, Cyclist). Notably, all methods on the official KITTI leaderboard
are ranked based on the moderately difficult results. Before Aug. 2019, 11 recall
points are applied to compute interpolated average precision, denotes as AP|R11

.
After [26] released, the official evaluation uses 40 recall points instead of 11
recall points in the benchmark, denoted as AP|R40

. Particularly, since the early
methods only report the results under old metric, we compare our results on
validation set using AP|R11

for fair comparison.

4.3 Implementation Details

In our motion loss, we generate two projection patches in the previous frame to
supervise both motion and depth. Particularly, to better supervise motion, we
use the ground truth 3D box b̂3D and the estimated motion [x′, y′, z′]motion to ob-
tain the patch in the previous frame. On the other hand, to supervise both depth
and motion, we replace the depth parameter in b̂3D with estimated depth z′3D
and obtain another previous patch with the estimated motion [x′, y′, z′]motion.
Both patches are used to compute SSIM and L1 loss with the current patch. All
patches are scaled to 32×32. We set λ1 = λ2 = 1, λ3 = 0.05.

A dropout layer with a dropout rate of 0.2 is applied after the channel at-
tention module. We adopt non-maximum suppression with an IoU threshold of
0.4 on our output in 2D space. Horizontal flipping is used for data augmenta-
tion. The input images are scaled to 512×1760. Following [4], a hill climbing
post-processing is applied for optimizing the estimated rotation α′

3D.
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Fig. 4. Qualitative Examples

Fig. 5. Visualization results of reconstructed object positions in previous frames.

The model is trained with SGD optimizer with a learning rate 0.01, a mo-
mentum 0.9, a weight decay 0.0005, and mini-batches of size 8. We adopt the
’one-cycle’ learning policy[27] with a maximum learning rate 0.01 and a mini-
mum learning rate 0.000001. The model has 263,283,080 trainable parameters
and the inference time is 0.4s. We train our network on 4 NVIDIA Tesla V100
GPUs for 50,000 iterations.

4.4 Experimental Results

In this section, we present evaluation results on the KITTI validation set[25]. We
compare our results with existing monocular methods in 3D object detection and
bird’s eye view (BEV) benchmarks. For fair comparison, all results are reported
in AP|R11

. We visualize our qualitative examples in Fig. 4. In Fig. 5, the second
row shows the scene in the previous timestamp corresponding to the first row.
Since we only predict the results in the current timestamp, the reconstructed
results from the estimated object motions in the previous timestamp show that
our model can estimate the object motion.

Car: Table 1 and Table 2 show the comparative results in Car at IoU threshold
0.7 and 0.5, respectively. Our methods achieve competitive results both in AP3D

and APBEV . As mentioned in [9], pseudo-LiDAR based methods [19, 17] fail
to detect other classes in their single model, while our model is a multi-class
detector. In addition, [19, 17] used the additional 2D detector to obtain the
better 2D results in their model and resort to multi-stage training. However, our
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Table 1. Comparative results on validation set at 0.7 IoU threshold for Car.

Method AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

Shift R-CNN[28] 13.84 11.29 11.08 18.61 14.71 13.57
MonoGRNet[21] 13.88 10.19 7.62 24.97 19.44 16.30
MonoPSR[29] 12.75 11.48 8.59 20.63 18.67 14.45
Multi-Fusion[30] 10.53 5.69 5.39 22.03 13.63 11.60
Mono3D-PLiDAR[19] 31.50 21.00 17.50 41.90 28.30 24.50

AM3D[17] 32.23 21.09 17.26 43.75 28.39 23.87
MonoDIS[26] 18.05 14.98 13.42 24.26 18.43 16.95
M3D-RPN[4] 20.27 17.06 15.21 25.94 21.18 17.90
SMOKE[20] 14.76 12.85 11.50 19.99 15.61 15.28
D4LCN[9] 26.97 21.71 18.22 34.82 25.83 23.53

Ours 25.49 18.86 17.15 33.69 25.02 20.38

Table 2. Comparative results on validation set at 0.5 IoU threshold for Car.

Method AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

MonoGRNet[21] 50.51 36.97 30.82 54.21 39.69 33.06
MonoPSR[29] 49.65 41.71 29.95 56.97 43.39 36.00
Multi-Fusion[30] 47.88 29.48 26.44 55.02 36.73 31.27
Mono3D-PLiDAR[19] 68.40 48.30 43.00 72.10 53.10 44.60

AM3D[17] 68.86 49.19 42.24 72.64 51.82 44.21
M3D-RPN[4] 48.96 39.57 33.01 55.37 42.49 35.29

Ours 59.00 44.29 36.72 66.38 46.32 38.48

multi-task model is trained end-to-end. The 2D detection results are shown in
Table 3.

Pedestrian & Cyclist: For Pedestrian and Cyclist, our method achieves the
state-of-the-art results in both 3D object detection and bird’s eye view bench-
marks (Table 4 and Table 5). Notably, due to the non-rigid body and small
size, pedestrians and cyclists are particularly hard to detect in 3D space. Most
methods fail to detect these two classes in their models. However, our proposed
multi-class 3D detection model outperforms all previous methods with a large
margin. Particularly, we achieve 10.46% relative improvement (12.46 vs. 11.23)
in Pedestrian AP3D under the moderate setting.

4.5 Ablations

To verify the effect of each component in our model, we conduct ablation study on
validation set. We only modify the target components and keep other settings
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Table 3. Comparative 2D detection results on validation set at 0.7 IoU threshold for
Car.

Method AP2D

Easy Moderate Hard

AM3D[17] 90.50 89.90 80.70
Mono3D-PLiDAR[19] 96.50 90.30 87.60

Ours 87.32 82.42 66.51

Table 4. Comparative results on validation set at 0.5 IoU threshold for Pedestrian.

Method AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

Shift R-CNN[28] 7.55 6.80 6.12 8.24 7.50 6.73
MonoPSR[29] 10.64 8.18 7.18 11.68 10.05 8.14
Mono3D-PLiDAR[19] 11.60 11.20 10.90 14.40 13.80 12.00
AM3D[17] 11.29 9.01 7.04 14.30 11.26 9.23
MonoDIS[26] 10.79 10.39 9.22 11.04 10.94 10.59
M3D-RPN[4] - 11.28 - - 11.44 -
D4LCN[9] 12.95 11.23 11.05 - - -

Ours 14.19 12.46 11.82 14.98 12.73 12.40

in our study. We evaluate the performance in both AP3D and APBEV using
AP|R11

.

Effect of Multi-frame Input: In Table 6, we compare models trained with
the different numbers of input frames. The model trained with 2 frames and 3
frames which additionally use one and two preceding frames as inputs, respec-
tively. The model with 2-frame input outperforms others in Car and Pedestrian.
In Cyclist, 3-frame input achieves the best. We present the contribution of con-
secutive frames in monocular 3D object detection task. Particularly, for hard
difficulty, we observe that the performance increases when using more frames as
input, which shows the effect of preceding frames on highly occluded objects as
well.

Effect of Motion Loss: To better utilize two consecutive frames, we add
motion loss Lmotion to train our model. Therefore, we ablate Lmotion in Table
7 to observe the contribution in our model. We show that Lmotion improves the
performance with large margin especially for Pedestrian and Cyclist. Since the
movement of pedestrians and cyclists is much smaller than cars, it is easier to
predict their motions and achieve large improvement.
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Table 5. Comparative results on validation set at 0.5 IoU threshold for Cyclist.

Method AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

Shift R-CNN[28] 1.85 1.08 1.10 2.30 2.00 2.11
MonoPSR[29] 10.88 9.93 9.93 11.18 10.18 10.03
Mono3D-PLiDAR[19] 8.50 6.50 6.50 11.00 7.70 6.80
AM3D[17] 8.90 4.81 4.52 10.12 6.39 5.63
MonoDIS[26] 5.27 4.55 4.55 5.52 4.66 4.55
M3D-RPN[4] - 10.01 - - 10.13 -
D4LCN[9] 5.85 4.41 4.14 - - -

Ours 10.94 10.39 10.43 12.31 10.76 10.76

Table 6. Comparisons of different number of frames as input on validation set

Class Input AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

Car 1-frame 24.09 18.05 15.08 31.23 23.36 18.95
2-frame 25.49 18.86 17.15 33.69 25.02 20.38

3-frame 23.88 18.05 16.46 30.82 23.73 19.30

Pedestrian 1-frame 7.15 5.84 5.28 8.01 6.29 6.22
2-frame 14.19 12.46 11.82 14.98 12.72 12.40

3-frame 13.14 11.51 11.12 13.46 11.73 11.48

Cyclist 1-frame 4.06 3.52 3.60 5.71 3.96 3.86
2-frame 10.84 10.39 10.43 12.31 10.76 10.76

3-frame 12.50 10.44 10.46 12.87 10.83 10.74

Effect of Attention Module: In this part, we compare the model trained
with the different numbers of attention groups in Table 8. We report the results
at moderate difficulty level for better viewing. We observe that the performance
of Car detection in both AP3D and APBEV becomes larger as the number of
attention groups increases . Notably, due to the small shapes of pedestrians
and cyclists, it is hard to detect them in 3D space and is more sensitive to the
hyperparameters. Overall, all categories achieve the best performances under 3
attention groups.

Effect of Patch Size: Table 9 shows the effect of different patch sizes used in
motion loss. We observe that the performance of Pedestrian detection and Cyclist
detection becomes better as the patch size increases. All categories achieve the
best performance when patch size is 32×32.
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Table 7. Comparisons of the effect of motion loss Lmotion on validation set

Class Lmotion AP3D APBEV

Easy Moderate Hard Easy Moderate Hard

Car ✗ 23.93 18.13 15.87 32.10 23.92 19.58
✓ 25.49 18.86 17.15 33.69 25.02 20.38

Pedestrian ✗ 6.86 6.06 5.51 7.61 5.97 6.02
✓ 14.19 12.46 11.82 14.98 12.72 12.40

Cyclist ✗ 6.83 5.97 6.02 9.25 6.68 6.39
✓ 10.84 10.39 10.43 12.31 10.76 10.76

Table 8. Comparisons of the number of attention groups in the moderate difficulty on
validation set

Num of Attention Groups AP3D APBEV

Car Pedestrian Cyclist Car Pedestrian Cyclist

0 17.66 10.99 10.15 23.31 11.36 10.23
1 18.11 5.81 5.49 23.75 11.96 5.65
2 18.54 11.33 3.75 24.21 12.09 4.09
3 18.86 12.46 10.39 25.02 12.72 10.76

5 Conclusions

In this paper, we proposed a three-streamed network which additionally esti-
mates relative object motions to recover depth cues for 3D object detection
from monocular images. We observe that depth prediction and occlusion are the
most important issues in monocular-based methods. Thus, we take consecutive
monocular images as inputs to overcome the above problems. To better utilize
consecutive frames, we proposed an unsupervised motion loss and applied the
attention mechanism. Our model is a multi-class detector which is more robust
in real-world scenes than existing pseudo LiDAR-based methods. Additionally,
our model also estimates the relative 3D motions for the detected objects, which
provides more information for the surrounding environment in driving scenarios.
Our experiments show that the proposed model outperforms existing methods
with a large margin for Pedestrian and Cyclist detection and achieves competi-
tive results for Car detection on the KITTI dataset.

Table 9. Comparisons of patch sizes in the moderate difficulty on validation set

Patch Size AP3D APBEV

Car Pedestrian Cyclist Car Pedestrian Cyclist

8x8 18.80 5.16 3.82 24.81 6.27 4.64
16x16 18.61 5.43 4.71 24.80 7.47 5.11
32x32 18.86 12.46 10.39 25.02 12.72 10.76
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