
AugGAN: Cross Domain Adaptation with

GAN-based Data Augmentation

Sheng-Wei Huang1⋆, Che-Tsung Lin1,2[000−0002−5843−7294]⋆, Shu-Ping Chen1,
Yen-Yi Wu1, Po-Hao Hsu1, and Shang-Hong Lai1

1Department of Computer Science, National Tsing Hua University, Taiwan
2Intelligent Mobility Division, Mechanical and Mechatronics Systems Research

Laboratories, Industrial Technology Research Institute, Taiwan
shengwei@mx.nthu.edu.tw, AlexLin@itri.org.tw, lai@cs.nthu.edu.tw

Abstract. Deep learning based image-to-image translation methods aim
at learning the joint distribution of the two domains and finding trans-
formations between them. Despite recent GAN (Generative Adversarial
Network) based methods have shown compelling results, they are prone
to fail at preserving image-objects and maintaining translation consis-
tency, which reduces their practicality on tasks such as generating large-
scale training data for different domains. To address this problem, we
purpose a structure-aware image-to-image translation network, which is
composed of encoders, generators, discriminators and parsing nets for the
two domains, respectively, in a unified framework. The purposed network
generates more visually plausible images compared to competing meth-
ods on different image-translation tasks. In addition, we quantitatively
evaluate different methods by training Faster-RCNN and YOLO with
datasets generated from the image-translation results and demonstrate
significant improvement on the detection accuracies by using the pro-
posed image-object preserving network.

Keywords: Generative adversarial network, image-to-image translation,
semantic segmentation, object detection, domain adaptation

1 Introduction

Deep learning pipelines have stimulated substantial progress for general object
detection. Detectors kept pushing the boundaries on several detection datasets.
However, despite being able to efficiently detect objects seen by arbitrary view-
ing angles, CNN-based detectors are still limited in a way that they could not
function properly when faced with domains significantly different from those
in the original training dataset. The most common way to obtain performance
gain is to go through the troublesome data collection/annotation process. Nev-
ertheless, the recent successes of Generative Adversarial Networks (GANs) on
image-to-image translation have opened up possibilities in generating large-scale
detection training data without the need for object annotation.

⋆ Indicates equal contribution
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Generative adversarial networks (Goodfellow et al. 2014)[1], which put two
networks (i.e., a generator and a discriminator) competing against each other,
have emerged as a powerful framework for learning generative models of random
data distributions. While expecting GANs to produce an RGB image and its
associated bounding boxes from a random noise vector still sounds like a fantasy,
training GANs to translate images from one scenario to another could help
skip the tedious data annotation process. In the past, GAN-based image-to-
image translation methods, such as Pix2Pix [2], were considered to have limited
applications due to the requirement for pairwise training data. Although these
methods yielded impressive results, the fact that they require pairwise training
images largely reduces their practicality for the problem that we aim to solve.

Recently, unpaired image-to-image translation methods have achieved aston-
ishing results on various domain adaptation challenges. Having almost identical
architectures, CycleGAN [3], DiscoGAN [4], and DualGAN [5] made unpaired
image-to-image translation possible through introducing the cycle consistency
constraint. CoGAN [6] is a model which also works on unpaired images, using
two shared-weight generators to generate images of two domains with one ran-
dom noise. UNIT [7] is an extension of CoGAN. Aside from having similar hard
weight-sharing constraints as CoGAN, Liu et al. further implemented the latent
space assumption by encouraging two encoders to map images from two domains
into the same latent space, which largely increases the translation consistency.
These methods all demonstrate compelling visual results on several image-to-
image translation tasks; however, what hinders the capability of these methods
for providing large-scale detection training data, specifically when faced with
translation tasks with a large domain shift, is the fact that these networks often
arrive at solutions where the translation results are indistinguishable from the
the target domain in terms of style, and usually contain corrupted image-objects.

In this paper we propose a structure-aware image-to-image translation net-
work, which allows us to directly benefit object detection by translating existing
detection RGB data from its original domain other scenarios. The contribution
of this work is three-fold: 1) We train the encoder networks to extract structure-
aware information through the supervision of a segmentation subtask, 2) we
experiment on different weight sharing strategy to ensure the preservation of
image-objects during image-translations, and 3) our object-preserving network
provides significant performance gain on the night-time vehicle detection.

We stress particularly on day-to-night image translation not only for the
importance of night-time detection, but also for the fact that day/night im-
age translation is one of the most difficult domain transformations. However,
our method is also capable of handling various domain pairs. We train our
network on synthetic (i.e., SYNTHIA [8], GTA dataset [9]) Compared to the
competing methods, the domain translation results of our network significantly
enhance the capability of the object detector for application on both synthetic
(i.e., SYNTHIA, GTA) and real-world (i.e., KITTI [10], ITRI) data. In addi-
tion, we welcome those who are interested in the ITRI dataset to email us for
provision.
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Fig. 1: Overall structure of the proposed image-to-image translation network. X,
Y: image domain X and Y; Z: feature domain; X̂pred, Ŷpred: predicted segmen-
tation masks; X̄, Ȳ : translated results; dotted line implicates soft-sharing, solid
line implicates hard-sharing.

2 Proposed Framework

In unsupervised image-to-image translation, models learn joint distribution where
the network encodes images from the two domains into a shared feature space.
We assume that, for an image to be properly translated to the other domain,
the encoded information is required to contain 1) mutual style information be-
tween domain A and B, and 2) structural information of the given input im-
age, as illustrated in Figure 1. Based on the assumption we design our network
to jointly optimize image-translation and semantic segmentation. Through our
weight-sharing strategy, the segmentation subtask serves as an auxiliary regu-
larization for image-translation.

Let X and Y denote the two image domains, X̂ and Ŷ denote the corre-
sponding segmentation masks, and Z represent the encoded feature space. Our
network, as depicted in Figure 1, consists of two encoders Ex : X → Z and
Ey : Y → Z, two generators, Gx : Z → Ȳ and Gy : Z → X̄, two segmentation

generators, Px : Z → X̂pred, and Py : Z → Ŷpred, and two discriminators Dx and
Dy for the two image domains, respectively. Our network learns image domain
translation in both directions and the segmentation sub-tasks simultaneously.
For an input x ∈ X , Ex first encodes x into the latent space, and the 256-
channel feature vector is then processed to produce 1) the translated output ȳ
via Gx, and 2) the semantic representation x̂pred via Px. The translated output
ȳ is then fed through the inverse encoder-generator pair {Ey, Gy} to yield the
reconstructed image xrec. Detailed architecture of our network is given in Table
1.
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Table 1: Network architecture for the image-to-image translation experiments.
N, K, and S denote the number of convolution filters, kernel size, and stride,
respectively

Layer Encoders Layer Info

1 CONV N64,K7,S1
2 CONV, ReLU N128,K3,S2
3 CONV, ReLU N256,K3,S2
4 RESBLK, ELU N512,K3,S1
5 RESBLK, ELU N512,K3,S1
5 RESBLK, ELU N512,K3,S1

Layer Generators / Parsing Networks Layer Info

1 RESBLK, ELU N512,K3,S1, Hard Shared
2 RESBLK, ELU N512,K3,S1, Hard Shared
3 RESBLK, ELU N512,K3,S1, Hard Shared
4 RESBLK, ELU N512,K3,S1, Hard Shared
5 RESBLK, ELU N512,K3,S1, Hard Shared
6 RESBLK, ELU N512,K3,S1, Hard Shared
7 DCONV, ReLU N128,K3,S2, Soft Shared
8 DCONV, ReLU N64,K3,S2, Soft Shared
9 (Genrator) CONV, Tanh N3,K7,S1
9 (Parsing Net) CONV, ReLU N(task specific),K7,S1
10 (Parsing Net) CONV, Softmax N6(task specific),K1,S0

Layer Discriminator Layer Info

1 CONV, LeakyReLU N64, K4, S2
2 CONV, LeakyReLU N128, K4, S2
3 CONV, LeakyReLU N256, K4, S2
3 CONV, LeakyReLU N512, K4, S2
3 CONV, LeakyReLU N512, K4, S1
3 CONV, Sigmoid N1, K4, S1

2.1 Structure-aware encoding and segmentation subtask

We actively guide the encoder networks to extract context-aware features by
regularizing them via segmentation subtask so that the extracted 256-channel
feature vector contains not only mutual style information between X and Y
domains, but also the intricate low-level semantic features of the input image
that are valuable in the preservation of image-objects during translation. The
segmentation loss is formulated as:

Lseg−x(Px, Ex, X, X̂) = λseg−L1Ex∼pdata(x)
[‖Px(Ex(x))− x̂‖1]

+ λseg−crossentropyEx∼pdata(x)
[‖ log(Px(Ex(x))− x̂)‖1]

(1)
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Lseg−y(Py, Ey, Y, Ŷ ) = λseg−L1Ey∼pdata(y)
[‖Py(Ey(y))− ŷ‖1]

+ λseg−crossentropyEy∼pdata(y)
[‖ log(Py(Ey(y))− ŷ)‖1]

(2)

2.2 Weight sharing for multi-task network

Sharing weights between the generator and parsing network allows the generator
to fully take advantage of the context-aware feature vector. We hard-share the
first 6 residual blocks and soft-share the subsequent two deconvolution blocks
for generators and parsing networks. We experiment on different weight-sharing
strategies, as illustrated in section 3.2, such as hard-share, not sharing the de-
convolution blocks, and not sharing the residual blocks, and come to the best
sharing strategy. We calculate the weight difference between deconvolution lay-
ers of the two networks and model the difference as a loss function through mean
square error with target as a zero matrix. The mathematical expression for the
soft weight sharing loss function is given by

Lω(ωG, ωP ) = − log((ωGx
· ωPx

/‖ωGx
‖2‖ωPx

‖2)
2) (3)

where ωG and ωP denote the weight vectors formed by the deconvolution layers
of the generator and parsing networks, respectively.

2.3 Cycle consistency

The cycle consistency loss has been proven quite effective in preventing network
from generating random images in the target domain. We also enforce the cycle-
consistency constraint in the proposed framework to further regularize the ill-
posed unsupervised image-to-image translation problem. The loss function is
given by

Lcyc(Ex, Gx, Ey, Gy, X, Y ) = Ex∼pdata(x)
[‖Gy(Ey(Gx(Ex(x))))− x‖1]

+ Ey∼pdata(y)
[‖Gx(Ex(Gy(Ey(y))))− y‖1].

(4)

2.4 Adversarial learning

Our network contains two Generative Adversarial Networks:GAN1: {Ex, Gx, Dx},
and GAN2: {Ey, Gy, Dy}. We apply adversarial losses to both GANs, and for-
mulate the objective loss functions as:

LGAN1
(Ex, Gx, Dx, X, Y ) = Ey∼pdata(y)

[logDx(y)]

+ Ex∼pdata(x)
[log(1−Dx(Gx(Ex(x))))]

(5)

LGAN2
(Ey, Gy, Dy, Y,X) = Ex∼pdata(x)

[logDy(x)]

+ Ey∼pdata(y)
[log(1−Dy(Gy(Ey(y))))]

(6)
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2.5 Network Learning

We jointly solve the learning problems for the image-translation streams:{E1, G1}
and {E2, G2}, the image-parsing streams: {E1, P1} and {E2, P2}, and two GAN
networks: GAN1 and GAN2, for training the proposed network. The integrated
objective function is given as follows:

Lfull = LGAN (Ex, Gx, Dx, X, Y ) + LGAN (Ey, Gy, Dy, Y,X)

+ λcyc ∗ Lcyc(Ex, Gx, Ey, Gy, X, Y )

+ λseg ∗ (Lseg(Ex, Px, X, X̂) + Lseg(Ey, Py, Y, Ŷ ))

+ λω ∗ (Lωx
(ωGx

, ωPx
) + Lωy

(ωGy
, ωPy

))

(7)

3 Experimental Results

Though many works were dedicated on providing large-scale vehicle datasets
for the research community [11–15], most public are collected in daytime. Con-
sidering that CNN-based detectors highly rely data augmentation techniques to
stimulate performance, training detectors with both day and night images is nec-
essary so as to make them more general. Synthetic dataset, such as SYNTHIA
or GTA dataset, provides diverse on-road synthetic sequences as well as segmen-
tation masks in scenarios such as day, night, snow, etc. As our network requires
both segmentation mask and nighttime image, we conducted the training of our
network with SYNTHIA and GTA datasets. For evaluation purpose, however,
we utilize real-world data such as KITTI and our ITRI datasets.

The performance of the network was further analyzed through training YOLO
[16] and Faster R-CNN (VGG 16-based) [17] detectors with generated image sets.
Aside from revising both detectors to perform 1-class vehicle detection, all hyper-
parameters were the same as those used for training on PASCAL VOC challenge.
The IOU threshold for objects to be considered true-positives is 0.5, where we
follow the standard for common object detection datasets. In the transformation
of segmentation Ground-Truth to its counterpart in detection, we exclude the
bounding boxes whose heights lower than 40 pixels or occluded for more than
75 percent in the subsequent AP estimation.

3.1 Synthetic Datasets

We first assess the effectiveness of training detectors with transformed images
in both day and night scenarios. We evaluated our network, which is trained
with SYNTHIA, by training detectors with transformed images produced by
our network. As shown in Table 2, AugGAN outperforms competing methods
in both day and night scenarios. AugGAN also surpasses its competitors when
trained with GTA dataset, see Table 3. Visually, the transformation results of
AugGAN is clearly better in terms of image-object preservation and preventing
the appearance of artifacts as shown in Figure 2 and Figure 3.
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Fig. 2: SYNTHIA day-to-night transformation results - GANs trained

with SYNTHIA: First row: SYNTHIA daytime testing images; Second row:
results of CycleGAN; 3rd row: results of UNIT; 4th row: results of AugGAN

Fig. 3: GTA day-to-night transformation results - GANs trained with

GTA: First row: GTA daytime testing images; Second row: outputs of Cycle-
GAN; 3rd row: outputs of UNIT; 4th row: outputs of AugGAN.
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Table 2: Detection accuracy comparison (AP) - GANs trained with SYNTHIA.
SDTrain/SNTrain: SYNTHIA daytime/nightime training set; SDTest/SNTest:
SYNTHIA daytime/nighttime testing set.

Training Testing CycleGAN UNIT AugGAN Detector

SDTrain SNTest 36.1 35.2 39.0 YOLO
SNTrain SDTest 33.8 32.6 38.0 YOLO
SDTrain SNTest 65.9 57.2 72.2 Faster RCNN
SNTrain SDTest 65.7 62.7 70.1 Faster RCNN

Table 3: Detection accuracy comparison (AP) - detectors trained with trans-
formed images produced by GANs(trained with GTA dataset), and tested with
real images. GTA-D-Train: transformed data with GTA training daytime images
as input; GTA-N-Test: GTA testing nighttime data.

Training Testing CycleGAN UNIT AugGAN Detector

GTA-D-Train GTA-N-Test 20.5 23.6 25.3 YOLO
GTA-D-Train GTA-N-Test 54.4 62.5 67.4 Faster-RCNN

3.2 KITTI and ITRI-Night Datasets

Aside from testing on SYNTHIA and GTA datasets, we also assess the capability
of our network on real world data, such as KITTI, which has been widely used in
assessing the performance of on-road object detectors used in autonomous driv-
ing systems. With the previously trained AugGAN, be it trained with SYNTHIA
or GTA dataset, we transformed the KITTI dataset (7481 images with 6686 of
which contains vehicle instances) [18] to its nighttime version and evaluate the
translation results via detector training. We trained vehicle detectors with the
translated KITTI dataset and tested on our ITRI-Night testing set (9366 images
with 20833 vehicle instances). As experimental result indicates, real-world data
transformed by AugGAN quantitatively and visually achieves better result even
though AugGAN was trained with synthetic dataset, see Table 4, Figure 4 and
Figure 5.

3.3 ITRI Daytime and Nighttime datasets

We collected a set of real-driving daytime (25104 images/87374 vehicle instances)
dataset, captured mostly in the same scenario as its our nighttime dataset (9366
images with 20833 vehicle instances). In Table 5, the experiments demonstrate
similar results as in other datasets. The transformed day-to-night training images
are proved to be helpful in vehicle detector training. Training images generated
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Table 4: Detection accuracy comparison (AP) - detectors trained with trans-
formed images produced by GANs(trained with GTA dataset and SYNTHIA),
and tested with real images. KITTI-D2N-S/KITTI-D2N-G: KITTI day-to-night
training data generated by GANs; ITRIN: ITRI-Night dataset.

Training Testing CycleGAN UNIT AugGAN Detector

KITTI-D2N-S ITRIN 20.2 19.0 31.5 YOLO
KITTI-D2N-G ITRIN 28.5 20.5 46.0 YOLO
KITTI-D2N-S ITRIN 59.6 49.2 65.6 Faster RCNN
KITTI-D2N-G ITRIN 72.0 64.0 79.3 Faster RCNN

by AugGAN outperforms those by competing methods due to its preservation
in image-objects, with some examples shown in Figure 6 and Figure 7.

Table 5: Detection accuracy comparison (AP) - detectors trained with trans-
formed images produced by GANs(trained with SYNTHIA/GTA dataset).
ITRID-D2N-S/ITRID-D2N-G: ITRI-day day-to-night training data generated
by GANs trained with SYNTHIA/GTA datasets; ITRIN: ITRI-Night dataset.

Training Testing CycleGAN UNIT AugGAN Detector

ITRID-D2N-S ITRIN 35.5 41.3 45.3 YOLO
ITRID-D2N-G ITRIN 37.9 42.6 44.1 YOLO
ITRID-D2N-S ITRIN 72.4 74.5 81.2 Faster RCNN
ITRID-D2N-G ITRIN 86.2 85.9 86.1 Faster RCNN

Fig. 4: KITTI day-to-night transformation results - GANs trained with

SYNTHIA: First row: KITTI images; Second row: result of CycleGAN; 3rd
row: result of UNIT; 4th row: result of AugGAN;
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Fig. 5: KITTI dataset day-to-night transformation results - GANs

trained with GTA dataset: First row: input images from KITTI dataset;
Second row: outputs of CycleGAN; 3rd row: outputs of UNIT; 4th row: outputs
of AugGAN

3.4 Transformations other than Daytime and Nighttime

AugGAN is capable of learning transformation across unpaired synthetic and
real domains and only segmentation supervision in domain-A is required. This
increases the flexibility of learning cross-domain adaptation for subsequent de-
tector training. As shown in Fig. 8: 2nd row, our method could learn image
translation from not only synthetic-synthetic, but also synthetic-real domain
pairs.

Fig. 6: ITRI-Day dataset day-to-night transformation results - GANs

trained with SYNTHIA: First row: input images from ITRI-Day dataset;
Second row: outputs of cycleGAN; 3rd row: outputs of UNIT; 4th row: outputs
of AugGAN
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Fig. 7: ITRI-Day dataset day-to-night transformation results - GANs

trained with GTA dataset: First row: input images from ITRI-Day dataset;
Second row: outputs of cycleGAN; 3rd row: outputs of UNIT; 4th row: outputs
of AugGAN

Fig. 8: More image translation cases: 1st column: GTA-day to SYNTHIA;
2nd column:GTA-day to GTA-sunset; 3rd column:GTA-day to GTA-rain; 4th
column:SYNTHIA-day to ITRI-night

4 Model Analysis

4.1 Segmentation subtask

In our initial experiment on introducing the segmentation subtask, the pars-
ing network was only utilized in the forward cycle (e.g., only day-to-night). We
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Table 6: Detection accuracy comparison (AP) - detectors trained with trans-
formed data produced by GANs(trained with SYNTHIA). SDTrain: SYNTHIA
daytime training set, transformed into nighttime; SNTest: SYNTHIA nighttime
testing set.

Training Testing CycleGAN UNIT AugGAN-1 AugGAN-2 Detector

SDTrain SNTest 36.1 35.2 38.1 39.0 YOLO
SDTrain SNTest 65.9 57.2 68.7 72.2 Faster RCNN

later on discovered that our results are improved by utilizing the parsing net-
work to regularize both forward and inverse cycles. As can be seen in Table 6,
it is quite obvious that adding regularization to the inverse cycle leads to bet-
ter transformation results which make detectors more accurate. Although using
only single-sided segmentation has already outperformed the previous works,
introducing segmentation in both forward and backward cycles brings further
accuracy improvement for object detection.

4.2 Weight-Sharing Strategy

Our network design is based on the assumption that extracted semantic segmen-
tation features of individual layers, through proper weight sharing, can serve as
auxiliary regularization for image-to-image translation. Thus finding the proper
weight sharing policy came to be the most important factor in our design.
Weighting sharing mechanism in neural networks can be roughly categorized
into soft weight-sharing and hard weight-sharing. Soft weight-sharing [19] was
originally proposed for regularization and could be applied to network compres-
sion [20]. Recently, hard weight-sharing has been proven useful in generating
images with similar high-level semantics [6]. The policy that we currently adopt
is two-folded: 1) hard-share encoders and residual blocks of the generator-parsing
net pairs, 2) soft-share deconvolution layers of the generator-parsing net pairs.
We came to this setting based on extensive trial and error, and during the process

Table 7: Weight-sharing strategy comparison: λw denotes the cosine similarity
loss multiplier, with λw=0.02 yielded best result. The matrix in this table is the
average precision of Faster RCNN

Training Testing Weight-sharing strategy AP - AugGAN

SDTrain SNTest Encoder: hard 39.9
SDTrain SNTest Encoder:hard; Decoder: hard 57.2
SDTrain SNTest Encoder: hard; Decoder: soft (λw=0.02) 68.7
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Fig. 9: Style transfer and segmentation results for different weight-

sharing strategies: 1st row: input images; 2nd row: style transfer and segmen-
tation results of hard weight sharing, hard-weighting on encoder only (λw=0),
and hard weighting sharing in encoder with soft-weight sharing (λw=0.02) in
decoder.

we realized that both policies are integral for the optimization of our network.
Without hard-sharing the said layers in 1), image-objects tends to be distorted;
Without 2), the network tends to only optimize one of the tasks, see Table 7 and
Figure 9. In short, our network surpasses competing methods because our multi-
task network can maintain realistic transformation style as well as preserving
image-objects with the help of segmentation subtask.

5 Conclusion and Future work

In this work, we proposed an image-to-image translation network for generat-
ing large-scale trainable data for vehicle detection algorithms. Our network is
especially adept in preserving image-objects, thanks to the extra guidance of
the segmentation subtask. Our method, though far from perfect, quantitatively
surpasses competing methods for stimulating vehicle detection accuracy. In the
future, we will continue to experiment on different tasks based on this framework,
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and our pursuit for creating innovative solutions for the world will continue to
stride.
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