

Load-Balancing and Prudent Deployment of VNFs
for Heterogeneous Multicore Systems

Jung-Chun Kao, Guang-Han Ma, Cheng-Yu Lee, Chun-Fu Kuo, and Jia-Hong Hong

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan

Abstract—Network function virtualization (NFV) is an enabling
technology for telecommunication operators to achieve flexible
service deployment and efficient reuse of physical resources;
operators are no longer restricted to dedicated hardware and can
run their services on off-the-shelf servers. However, there has been
little research effort on optimizing NFV for heterogeneous
multicore architectures such as ARM’s big.LITTLE technology
and Intel’s Performance Hybrid Architecture. In this paper, we
consider CPU core affinity of virtual network functions (VNFs)
and study load-balancing and prudent deployment of VNFs in a
heterogeneous multicore system. We not only develop the Four-
Class Filling (FCF) algorithm with a complexity of 𝑶ሺ𝒏 𝐥𝐨𝐠 𝒏ሻ and
an approximation ratio of 3/4, but also implement it on an NFV
platform equipped with two types of CPU cores. Real-world
measurement validates feasibility and effectiveness of our method.
Besides, simulation results show that our algorithm performs very
well in terms of load-balancing factor, operational cost, and excess
usage.

Index Terms—Network function virtualization, VNF

deployment, heterogeneous multicore system, software-defined
network

I. INTRODUCTION

Network function virtualization (NFV) represents a
paradigm shift in telecommunication. Traditionally, individual
network functions such as routers and firewalls execute on
dedicated hardware. The emergence of NFV enables to move
network functions out of dedicated hardware and into software
modules that run on commodity machines like off-the-shelf
servers. Such software modules are called virtual network
functions (VNFs) and often employ virtualization technologies,
running within containers or virtual machines.

Since NFV decouples network functions from underlying
dedicated hardware devices, network service providers or
operators can easily add, change, or migrate VNFs on
commodity machines. The ability to provide network services
on demand and in real time at low infrastructure cost facilitates
operators to achieve flexible service deployment and efficient
reuse of physical resources.

A service function chain (SFC) is a sequence of multiple
VNFs in which specific flows are steered and processed in
order. Allocating the VNFs in SFCs to physical resources plays
an important role in NFV, because it affects performance
significantly. There has been a considerable amount of related
work in the literature. For example, [10] studies the VNF
Orchestration Problem (VNF-OP) aiming to minimize the
overall network operational cost by placing the VNFs in a given

set of SFCs to physical nodes such that delay and capacity
constraints are met. VNF-OP, which is formulated in [10] as an
Integer Linear Programming (ILP) problem, is NP-hard.

Using the sharing capability enabled by NFV, [9] addresses
the VNF forwarding graph (VNF-FG) placement and chaining
problem. In [9], VNF-FG is formulated as an ILP problem
whose main objective is to minimize the total consumed power;
scalability concern due to NP-harness is overcome by limiting
the number of candidate hosts. In [11], a method based on
Monte Carlo tree search is developed for energy consumption
minimization. [14] leverages graph convolutional network and
deep reinforcement learning to minimize a weighted sum of
energy consumption and end-to-end delay of SFCs.

In addition to optimization of operational expenditure and
power/energy consumption, improving utilization of physical
resources has also attracted plenty of attention. Given a set of
SFCs and their injection rates, [12] aims to minimize the
average usage (in percentage) of network resources including
communication links and compute nodes. [13] develops an
VNF deployment algorithm for scaling-out, which tends to
deploy the VNFs of new SFC requests to the physical machines
that have already been deployed VNFs in order to utilize as few
physical machines as possible.

None of the above work is designed for heterogeneous
multicore architectures. Heterogeneous multicore architectures
bundle cores of different types into a single physical processor;
an example is Intel’s Performance Hybrid Architecture, which
integrates two types of cores—faster yet more power-hungry
Performance-cores (P-cores) and slower yet more power-
efficient Efficient-cores (E-cores). Another example is ARM’s
big.LITTLE technology. Processors with heterogeneous cores
have been widely used in many devices such as smart phones
and computers; the number of cores per processor have been
increasing steadily, from single digit to double digits or even
hundreds. NFV can benefit from such hybrid and strong
computing power. However, there has been little effort taken in
this research direction, which motivates us to study NFV with
heterogeneous multicores considered explicitly.

In this paper, we focus on load-balancing and prudent
deployment of affinity-aware VNFs for heterogeneous
multicore systems. Although our method can be extended to a
system with three or more types of cores, we focus on a system
with cores of two types, say P-cores and E-cores, for two-fold
reasons: First, the majority of heterogeneous multicore CPUs
available in the market are equipped with two types of cores;
second, it is for simplicity of exposition.

979-8-3503-0358-2/24/$31.00 ©2024 IEEE

As we measure and show in Fig. 1, the end-to-end latency of
a compute-bound SFC running on a P-core is quite different
from the SFC latency running on an E-core. This implies the
importance of affinity awareness: A VNF that either is
computationally intensive or has a strict requirement for latency
must run on a P-core. In addition to affinity awareness, we also
consider load-balancing and prudence, which aims to distribute
the workload of a given set of VNFs to multiple cores for better
responsiveness, while preventing cores from being underused.
VNFs deployed to underused cores should be re-deployed to
fewer cores to reduce the operational cost. To achieve the above
requirements in real time, we propose an algorithm called Four-
Class Filling (FCF) with a time complexity of 𝑂ሺ𝑛 log 𝑛ሻ and
an approximation ratio of 3/4 under some condition.

Fig. 1. The end-to-end latency of a compute-bound SFC we measure.

The remainder of this paper is organized as follows. In
Section II, we formulate the load-balancing and prudent VNF
deployment problem for a heterogeneous multicore system. We
present the Four-Class Filling (FCF) algorithm we develop for
the VNF deployment problem in Section III. Section IV
presents both measurement results of our implementation and
simulation results of our algorithm. We present concluding
remarks in Section V.

II. PROBLEM FORMULATION

The problem we consider in this paper is load-balancing and
prudent VNF deployment tailored to a heterogeneous multicore
system. Roughly speaking, we take the advantage of affinity
awareness on such a system and aim to distribute the workload
of VNFs evenly to multiple cores (for better responsiveness),
while not utilizing too many cores (for lower operational cost).
For simplicity of exposition, we focus on a heterogeneous
multicore system with cores of two types, although our method
can be extended to a system with more than two types of cores.

We consider a heterogeneous multicore machine that has a
set of available E-cores (denoted by 𝐸 ൌ ሼ1,2, … , |𝐸|ሽ) and a

1 We assume that 𝑠 is smaller than the threshold of a P-core, for each 𝑛 ∈
ℕ. Otherwise, an exclusive P-core is allocated to the VNF for load-balancing.

set of available P-cores (denoted by 𝑃 ൌ ሼ|𝐸| 1, |𝐸|
2, … , |𝐸| |𝑃|ሽ). In total, there are |𝑂| ൌ |𝐸| |𝑃| available
cores, which is denoted by 𝑂 ൌ ሼ1,2, … , |𝑂|ሽ. A P-core has
higher computing power than an E-core. The (computing)
capacity of core 𝑜 is

 𝑐𝑜 ൌ ቄ
𝐶୫ୟ୶ if core 𝑜 is a E-core
𝑘 ⋅ 𝐶୫ୟ୶ if core 𝑜 is a P-core

 (1)

where 𝑘 is a constant greater than one.
We are given a set of VNFs, each of which is required to be

deployed to one of the available cores under a few constraints.
The set of these VNFs is denoted 𝑁 ൌ ሼ1,2, … , |𝑁|ሽ. Each VNF
has its own size or called workload, which is the amount of
computing power it needs. The workload of VNF 𝑛 is denoted
by 𝑠, 𝑛 ∈ 𝑁.1 A larger VNF means its workload is heavier.

Each VNF must be deployed to a core with enough residual
capacity. In addition, if a VNF is computationally intensive or
it has a strict requirement for latency and cannot fulfill by a E-
core, the VNF must be deployed to a P-core. Such a VNF is
called P-affined. The usage of each core cannot exceed the
core’s capacity. The usage of core 𝑜 is denoted by 𝑢, 𝑜 ∈ 𝑂.
For any 𝑛 ∈ 𝑁, deploying VNF 𝑛 to a core increases the usage
of the core by 𝑠 and decreases the residual usage by 𝑠.

According to their usage, cores are categorized into unused
cores and used cores; used cores are further categorized into
underused cores and well-used cores. A used core is a core with
positive usage and an unused core is a core with zero usage. An
underused core is a used core whose usage is below a threshold,
whereas a well-used core is a used core whose usage is equal or
greater than the threshold. The usage threshold of core 𝑜, 𝑜 ∈
𝑂, is set to be:

 𝑡𝑜 ൌ ቄ
𝐶୫୧୬ if core 𝑜 is a E-core
𝑘 ⋅ 𝐶୫୧୬ if core 𝑜 is a P-core

 (2)

The margin of a core is defined as the threshold value of the
core subtracted by its usage. Positive margin implies underused
or unused, whereas non-positive margin implies well-used.

VNF deployment should not result in multiple underused
cores. Having many underused cores implies plenty of residual
capacity and hence it is easy to re-deploy VNFs to fewer cores.
Using a reduced number of cores, CPUs, or virtual machine
instances can reduce the operational cost. Once VNF
deployment is done, there should exist zero or one underused
core. This requirement is referred to as the prudence constraint.

For load-balancing, all VNFs in 𝑁 should be deployed to as
many cores as possible so as to distribute the workload of these
VNFs evenly. Combining load-balancing and prudence, all
VNFs in 𝑁 should be deployed to as many cores as possible
while keeping all (except at most one) of these cores well-used.

The VNF deployment problem we study in this paper aims to
maximize the number of cores to which a given set of VNFs are
deployed, while satisfying 1) the usage of each core cannot
exceed its capacity, 2) the number of underused cores is at most
one, and 3) all the P-affined VNFs must be deployed to P-cores.
Equivalently, we aim to maximize the number of well-used
cores, while having at most one underused core and deploying

all P-affined VNFs to P-cores. The VNF deployment problem
we study is a modified version of the bin covering problem. The
differences of these two problems are three-fold: First, the VNF
deployment problem involves two types of cores/bins (i.e., E-
cores and P-cores), whereas the bin covering problem has a
single type of bins. Second, the usage of each core in the VNF
deployment problem is bounded below (by the threshold) and
bounded above (by the capacity), whereas the bin size in the bin
covering problem is only bounded from below. Third, the bin
covering problem does not consider affinity.

III. OUR ALGORITHM: FOUR-CLASS FILLING

To solve the load-balancing and prudent VNF deployment
problem in an affinity-aware, fined-grained, and efficient way,
we propose the four-class filling (FCF) algorithm, which
consists of three stages—preprocessing, filling, and
postprocessing. What follows present how FCF works, as well
as the complexity and the approximation ratio of FCF.

A. The Preprocessing Stage

Initially, the usage of each core is zero; that is, 𝑢 ൌ 0, 𝑜 ∈
𝑂. All VNFs in 𝑁 are sorted and numerated in the descending
order of their workload. Based on the workload, all VNFs are
divided into the following four classes:

𝑊 ൌ ሼ𝑛 ∈ 𝑁: 𝐶୫୧୬ 𝑠 𝑘 ⋅ 𝐶୫୧୬ or 𝑛 is P-affinedሽ

𝑋 ൌ ቄ𝑛 ∈ 𝑁:
ଵ

ଶ
𝐶୫୧୬ 𝑠 ൏ 𝐶୫୧୬ቅ

𝑌 ൌ ቄ𝑛 ∈ 𝑁:
ଵ

ଷ
𝐶୫୧୬ 𝑠 ൏

ଵ

ଶ
𝐶୫୧୬ቅ

𝑍 ൌ ቄ𝑛 ∈ 𝑁: 0 ൏ 𝑠 ൏
ଵ

ଷ
𝐶୫୧୬ቅ

(3)

Note that a P-affined VNF is categorized into W-class,
regardless of its workload. The VNFs in these four classes are
sorted in the descending order of their workload, respectively.

The preprocessing stage pre-allocates W-class VNFs to P-
cores. An unused P-core is allocated the VNFs in 𝑊 in order,
one at a time, until either the core’s margin is no greater than
𝐶୫୧୬ or the core’s residual capacity is smaller than the next
VNF’s workload. If there are W-class VNFs unallocated, the
same allocation process repeats to a new unused P-core.

The preprocessing stage ends up leaving four types of
cores—underused P-cores, (unused) E-cores, well-used P-
cores, and unused P-cores. The sets of cores of these four types
are denoted by 𝑃, 𝐸, 𝑃ு, and 𝑃, respectively. The filling stage
will deal with cores of the first two types. There is no need to
fill well-used P-cores with extra VNFs2. Utilizing unused P-
cores is deferred to the postprocessing stage3, if necessary.

B. The Filling Stage

The filling stage allocates the VNFs in 𝑁ᇱ ൌ 𝑋 ∪ 𝑌 ∪ 𝑍 to
the cores in 𝑂′ ൌ 𝑃 ∪ 𝐸, iteratively. An iteration deals with the
core in 𝑂′ with highest priority. During an iteration, each VNF
allocated to the core is removed from 𝑋, 𝑌 or 𝑍; at the end of
an iteration, the highest-priority core is removed from 𝑂′. The
priority of cores is set as follows: Underused P-cores have

2 This is because well-used cores have satisfied all constraints.
3 This is because we tend to keep as many P-cores unused as possible. They

are reserved for future use, especially for P-affined VNFs.

higher priority than unused E-cores4; among the cores of the
same type, larger residual capacity implies higher priority. An
iteration has two phases. If 𝑋 ∪ 𝑌 ് ∅ and 𝑍 ് ∅, an iteration
starts with phase 1; otherwise, phase 1 is skipped and only
phase 2 is executed.

Phase 1 first does XY-filling repeatedly: The highest-priority
core is filled with either the largest VNF in 𝑋 or the two largest
VNFs in 𝑌, whichever keeps margin positive and whichever is
larger. This XY-filling process repeats until either the next XY-
filling will make the core’s margin non-positive or 𝑋 ∪ 𝑌 ൌ ∅.
After that, phase 1 does reverse Z-filling repeatedly: The core
is filled with the VNFs in 𝑍, one at a time, in the ascending
order of workload, until 1) the core’s margin becomes non-
positive, 2) the core’s residual capacity is too small to
accommodate the next VNF, or 3) 𝑍 ൌ ∅. In the first two cases,
this iteration completes with no need to execute phase 2; in the
last case, this iteration moves forward to phase 2.

Phase 2 executes only if either 𝑋 ∪ 𝑌 or 𝑍 is empty.
According to the sizes of 𝑋 ∪ 𝑌 and 𝑍 , phase 2 has three
conditional branches:
 𝑋 ∪ 𝑌 ൌ ∅ and 𝑍 ് ∅: Z-filling is applied to the highest-

priority core repeatedly. The core is filled with the VNFs
in 𝑍 in the descending order of workload, one at a time,
until either 1) the core’s margin becomes non-positive, 2)
the core’s residual capacity is too small to accommodate
the next VNF, or 3) 𝑍 ൌ ∅.

 𝑍 ൌ ∅ and 𝑋 ∪ 𝑌 ് ∅ : XY-filling is applied to the
highest-priority core repeatedly. The core is filled with
either the two largest VNFs in 𝑋 or the three largest VNFs
in 𝑌 , whichever makes the usage no larger than the
capacity and whichever is smaller. XY-filling repeats until
either the core’s margin becomes non-positive or 𝑋 ∪
𝑌 ൌ ∅. In the case when XY-filling cannot allocate any
VNF to the core, we switch to use the SI algorithm [1] to
fill the core with extra VNFs in 𝑋 ∪ 𝑌.

 𝑋 ∪ 𝑌 ൌ 𝑍 ൌ ∅: There is no need to do anything, because
all VNFs in 𝑋 ∪ 𝑌 ∪ 𝑍 have been allocated to cores.

After running anyone of the branches, phase 2 completes and
so does this iteration.

The filling stage ends up either having all VNFs allocated or
having a non-empty set of unallocated VNFs, which is denoted
by 𝑁′′. In the latter case, all cores in 𝑂ᇱ ൌ 𝑃 ∪ 𝐸 have become
well-used during the filling stage; only the unused P-cores (i.e.,
the cores in 𝑃) should be used to allocate the VNFs in 𝑁′′.

C. The Postprocessing Stage

If 𝑁ᇱᇱ ് ∅ (because there are VNFs in 𝑋 ∪ 𝑌 ∪ 𝑍 that
remains unallocated at the end of the filling stage), the
postprocessing stage allocates the VNF in 𝑁ᇱᇱ to the cores in
𝑂ᇱᇱ ൌ 𝑃 in the same way as the filling stage, except the VNFs
in 𝑁ᇱᇱ are re-categorized into the following three classes

𝑋′′ ൌ ቄ𝑛 ∈ 𝑁′′:

ଵ

ଶ
𝑘 ⋅ 𝐶୫୧୬ 𝑠 ൏ 𝑘 ⋅ 𝐶୫୧୬ቅ

𝑌′′ ൌ ቄ𝑛 ∈ 𝑁′′:
ଵ

ଷ
𝑘 ⋅ 𝐶୫୧୬ 𝑠 ൏

ଵ

ଶ
𝑘 ⋅ 𝐶୫୧୬ቅ

(4)

4 This is because it is not allowed to have multiple underused cores in the
VNF deployment problem.

𝑍′′ ൌ ቄ𝑛 ∈ 𝑁′′: 0 ൏ 𝑠 ൏
ଵ

ଷ
𝑘 ⋅ 𝐶୫୧୬ቅ

instead of X-class, Y-class, and Z-class shown in (3).

D. Complexity and Approximation Ratio

Due to the space problem, we present the computational
complexity and the approximation ratio of FCF without delving
into too many details.

The complexity of the pre-processing stage is 𝑂ሺ|𝑁| ⋅
log|𝑁|ሻ because of sorting. The complexity of the filling stage
and the post-processing stage is 𝑂ሺ|𝑁ᇱ|ሻ and 𝑂ሺ|𝑁ᇱᇱ|ሻ ,
respectively, because both XY-filling and Z-filling allocate at
least one VNF to a core at a time. Knowing the complexity of
FCF’s stages, it is straightforward to get the complexity of the
entire FCF, as shown in Theorem 1.

Theorem 1. FCF is of complexity 𝑂ሺ𝑛 log 𝑛ሻ , where 𝑛 ൌ
|𝑁| is the total number of VNFs.

Due to the space problem, we present the approximation ratio
of FCF without showing any derivation.

Theorem 2. If 𝑊 ൌ ∅ and 𝐶୫ୟ୶ 2 ⋅ 𝐶୫୧୬ , FCF has an
approximation ratio of 3/4.

IV. PERFORMANCE EVALUATION

As will be shown in Section IV.A, we validate the
effectiveness of our implementation and our proposed FCF
algorithm through a small-scale, real-world experimental
measurement. In addition, as will be shown in Section IV.B, by
simulation we compare the performance of our proposed FCF
algorithm with an existing algorithm for scenarios at medium
scale.

A. Experimental Implementation and Measurement

1) Implementation Overview
As shown in Fig. 2, our experiment has three computers, each

equipped with one or two 10 gigabit network interface cards
(NICs). One of the three computers is a server, which provides
network services; the other two computers act as traffic
generators. The server equipped with Intel Core i7-12700
processor (which has eight P-cores and four E-cores) executes
our proposed FCF algorithm and OpenNetVM [3] to manage
deployment and execution of VNFs. The traffic generators
inject packet flows to the server, by using Pktgen [4].

Fig. 2. Overview of our hardware implementation.

On the server, we utilize a technology called process
isolation to limit, account for, and isolate the running VNFs.
The injection rate and the end-to-end latency of each SFC are
measured by a software module we develop in [5]. Based on the
injection rate measured, the workload of each VNF is predicted,
in real time. VNF workload is predicted by a supervised-
learning-based method we devise in [2]. To obtain a training
dataset required by supervised learning, we develop an
instruction-level tool to collect instruction statistics, Intel
Performance Counter Monitor (PCM) [15] metrics, and usage
of cores (with the help of a runtime code manipulation system
called DynamoRIO [16]).

2) Experimental Measurement
In the experiment, all packets injected to the server are

processed through an SFC consisting of two VNFs; packets first
go to the Busy forward VNF and then move to the AES
encryption VNF. Busy forward is a VNF we develop (by
modifying the VNF available in [6]) for workload
customization; AES encryption is an open-sourced VNF
available in [7]. By process isolation technology, two P-cores
and two E-cores are reserved for the two VNFs; other processes
are not allowed to use these cores.

Fig. 3. Throughput measured. The packet injection rate keeps low by the 7th
second and then rises gradually to a high rate.

We compare the FCF algorithm with two fixed schemes—
VNFs on a P-core and VNFs on an E-core. As shown in Fig. 3,
it is observed that at a low injection rate (by the 7th second),
these three schemes perform the same because even a single E-
core can afford the low workload of the two VNFs. As packets
are injected at a high rate, the workload exceeds the capacity of
a single core and therefore these three schemes perform
differently: FCF performs best because it allocates the two
VNFs to two cores and hence the workload is distributed. On
the contrary, putting all VNFs on an E-core performs worst
because there is no load-balancing and an E-core is slower than
a P-core.

B. Simulation Results

By simulation, we compare the performance of our proposed
FCF algorithm with the local search algorithm (LSA) [8]. The

NIC

NIC

NIC

NIC

server
traffic generator 1 (TG1)

traffic generator 2 (TG2)

LSA first assigns VNFs to cores randomly and then iteratively
move a VNF from the busiest core to the lowest-usage core if
the usage of the new busiest core (after this movement) is
smaller than that of the busiest core in the previous iteration.

The performance metrics of interest include the load-
balancing factor, the number of used cores, and the sum of
excess usage. The load-balancing factor is defined as the
number of well-used cores subtracted by the number of
underused cores, in order to reflect that well-used cores are
beneficial from the load-balancing aspect and underused cores
are costly from the prudence aspect. The excess usage of core
𝑜 is defined as ሺ𝑢 െ 𝑡ሻା, which is the amount of usage that
exceeds the threshold value. The sum of excess usage is the
total amount of excess usage of all cores, which is
∑ ሺ𝑢 െ 𝑡ሻା

∈ை . Unlike Section IV.A, throughput is not
within the scope of interest in this subsection; this is because
the total workload of VNFs is set to be less than the total
capacity of cores and thus all the algorithms used in this paper
result into the same throughput in the long run.

In the simulation, the number of E-cores is fixed at 8, but the
number of the P-cores varies: The scenarios with 4, 6, and 8 P-
cores are considered.5 The number of instances per scenario is
1000. 𝐶୫ୟ୶ is set/normalized to 100, 𝐶୫୧୬ is set to 50, and 𝑘 is
set to 1.5. In each scenario, the number of VNFs per service
function chain (SFC) is set to 5 and the number of SFCs is set
to be equal to the number of P-cores. Among the VNFs, the
number of W-class VNFs is half of the number of P-cores, the
number of X-class VNFs is equal to the number of P-cores, the
number of Y-class VNFs is equal to the number of P-cores, and
the remaining VNFs are all Z-class VNFs. The workload of
VNFs in each class is uniformly distributed in-between the
lower bound and the upper bound defined in (3).

Fig. 4. Load-balancing factor.

Fig. 4 shows the simulation results in terms of the (averaged)
load-balancing factor; the larger load-balancing factor, the
better. It is observed that our proposed FCF algorithm

5 These numbers of cores are in accordance with Intel Core i9-12900

processor, which has eight E-cores and eight P-cores.

consistently outperforms LCA in load-balancing factor,
regardless of the number of P-cores.

In terms of the number of used cores, Fig. 5 shows that LSA
consumes all P-cores and all E-cores in all the three scenarios.
However, a considerable number of cores consumed under LSA
are underused; this explains why LSA performs poorly in terms
of load-balancing factor. On the contrary, FCF allocates VNFs
to less cores that LSA does. A reason behind is that FCF
considers both load-balancing and prudence, which increases
the number of well-used cores but prevents cores from
becoming underused; on the contrary, LSA tends to use all the
cores. From the point of view of operational cost, FCF
outperforms LSA.

Fig. 5. The number of used cores.

Fig. 6. The sum of excess usage.

We also show the simulation results in terms of the sum of
excess usage; the smaller excess usage, the better. In contrast to
load-balancing factor which is a discrete indicator (because a
used core is either well-used or underused), the sum of excess
usage is a continuous indicator (that reflects the total amount of

excess usage compared to the ideal case in which the usage of
each used core is equal to its threshold value). As shown in Fig.
6, FCF performs better than LSA, because the sum of excess
usage caused by FCF is smaller than that of LSA. A summary
can be drawn from what is observed in Fig. 4, Fig. 5, and Fig.
6. Compared with LSA, FCF not only distributes the workload
over used cores more evenly, which implies better load-
balancing, but also uses fewer cores, which results in better
prudence (and lower operational cost).

V. CONCLUSION

This paper studies the load-balancing and prudent VNF
deployment problem for heterogeneous multicore systems. We
consider a commodity machine equipped with two types of
cores and develop a fast yet efficient algorithm. The FCF
algorithm we propose is of complexity 𝑂ሺ𝑛 log 𝑛ሻ and has an
approximation ratio of 3/4 under some condition. In addition to
developing the FCF algorithm, we implement an NFV platform
equipped with two types of cores. We validate the effectiveness
of our method, through implementation and measurement.
Besides, extensive simulation results show that our algorithm
performs very well in load-balancing factor, the number of used
cores, and the sum of excess usage.

ACKNOWLEDGMENT

Jung-Chun Kao is the corresponding author. This work was
supported in part by National Science and Technology Council,
Taiwan, under grants no. NSTC 112-2221-E-007-075.

REFERENCES
[1] J. Csirik, J. B. Frenk, M. Labbe, and S. Zhang, “Two simple algorithms

for bin covering,” Acta Cybernetica, vol. 14, no. 1, Feb. 1999.
[2] C.-F. Kuo, “NFV performance prediction based on run-time instruction

analysis,” master thesis, National Tsing Hua University, July 2021.
[3] W. Zhang, G. Liu, W. Zhang, et al., “OpenNetVM: A Platform for High

Performance Network Service Chains,” in Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, 2016.

[4] K. Wiles, The Pktgen Application, https://pktgen-dpdk.readthedocs.io/
en/latest.

[5] C.-Y. Lee, “Resource allocation for NFV in hybrid multi-core
architecture,” master thesis, National Tsing Hua University, Jul. 2022.

[6] Catherinemeadows, The Simple Forward, https://github.com/sdnfv/
openNetVM/tree/master/examples/simple_forward.

[7] Catherinemeadows, The AES encryption, https://github.com/sdnfv/
openNetVM/tree/master/examples/aes_encrypt.

[8] J. Zheng, C. Tian, H. Dai, et al., “Optimizing NFV chain deployment in
software-defined cellular core,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, Feb. 2020.

[9] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “A green VNFs
placement and chaining algorithm,” IEEE/IFIP Network Operations and
Management Symposium, 2018.

[10] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” International Conference on
Network and Service Management (CNSM), 2015.

[11] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Energy efficient
algorithm for VNF placement and chaining,” IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017.

[12] I. Jang, S. Choo, M. Kim, S. Pack, and M. K. Shin, “Optimal network
resource utilization in service function chaining,” IEEE NetSoft
Conference and Workshops (NetSoft), 2016.

[13] X. Zhao, X. Jia, and Y. Hua, “An efficient VNF deployment algorithm for
SFC scaling-out based on the proposed scaling management mechanism,”
Information Communication Technologies Conference (ICTC), 2020.

[14] S. Qi, S. Li, S. Lin, M. Y. Saidi, and K. Chen, “Energy-efficient VNF
deployment for graph-structured SFC based on graph neural network and
constrained deep reinforcement learning,” Asia-Pacific Network
Operations and Management Symposium, 2021.

[15] R. D. Thomas Willhalm, Intel Performance Counter Monitor,
https://github.com/opcm/pcm.

[16] Dhiru Kholia, Dynamic Instrumentation Tool Platform (DynamoRIO),
https://github.com/DynamoRIO.

