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Abstract—Network function virtualization (NFV) is an enabling 
technology for telecommunication operators to achieve flexible 
service deployment and efficient reuse of physical resources; 
operators are no longer restricted to dedicated hardware and can 
run their services on off-the-shelf servers. However, there has been 
little research effort on optimizing NFV for heterogeneous 
multicore architectures such as ARM’s big.LITTLE technology 
and Intel’s Performance Hybrid Architecture. In this paper, we 
consider CPU core affinity of virtual network functions (VNFs) 
and study load-balancing and prudent deployment of VNFs in a 
heterogeneous multicore system. We not only develop the Four-
Class Filling (FCF) algorithm with a complexity of 𝑶ሺ𝒏 𝐥𝐨𝐠 𝒏ሻ and 
an approximation ratio of 3/4, but also implement it on an NFV 
platform equipped with two types of CPU cores. Real-world 
measurement validates feasibility and effectiveness of our method. 
Besides, simulation results show that our algorithm performs very 
well in terms of load-balancing factor, operational cost, and excess 
usage. 

Index Terms—Network function virtualization, VNF 

deployment, heterogeneous multicore system, software-defined 
network 

I. INTRODUCTION 

Network function virtualization (NFV) represents a 
paradigm shift in telecommunication. Traditionally, individual 
network functions such as routers and firewalls execute on 
dedicated hardware. The emergence of NFV enables to move 
network functions out of dedicated hardware and into software 
modules that run on commodity machines like off-the-shelf 
servers. Such software modules are called virtual network 
functions (VNFs) and often employ virtualization technologies, 
running within containers or virtual machines. 

Since NFV decouples network functions from underlying 
dedicated hardware devices, network service providers or 
operators can easily add, change, or migrate VNFs on 
commodity machines. The ability to provide network services 
on demand and in real time at low infrastructure cost facilitates 
operators to achieve flexible service deployment and efficient 
reuse of physical resources. 

A service function chain (SFC) is a sequence of multiple 
VNFs in which specific flows are steered and processed in 
order. Allocating the VNFs in SFCs to physical resources plays 
an important role in NFV, because it affects performance 
significantly. There has been a considerable amount of related 
work in the literature. For example, [10] studies the VNF 
Orchestration Problem (VNF-OP) aiming to minimize the 
overall network operational cost by placing the VNFs in a given 

set of SFCs to physical nodes such that delay and capacity 
constraints are met. VNF-OP, which is formulated in [10] as an 
Integer Linear Programming (ILP) problem, is NP-hard. 

Using the sharing capability enabled by NFV, [9] addresses 
the VNF forwarding graph (VNF-FG) placement and chaining 
problem. In [9], VNF-FG is formulated as an ILP problem 
whose main objective is to minimize the total consumed power; 
scalability concern due to NP-harness is overcome by limiting 
the number of candidate hosts. In [11], a method based on 
Monte Carlo tree search is developed for energy consumption 
minimization. [14] leverages graph convolutional network and 
deep reinforcement learning to minimize a weighted sum of 
energy consumption and end-to-end delay of SFCs. 

In addition to optimization of operational expenditure and 
power/energy consumption, improving utilization of physical 
resources has also attracted plenty of attention. Given a set of 
SFCs and their injection rates, [12] aims to minimize the 
average usage (in percentage) of network resources including 
communication links and compute nodes. [13] develops an 
VNF deployment algorithm for scaling-out, which tends to 
deploy the VNFs of new SFC requests to the physical machines 
that have already been deployed VNFs in order to utilize as few 
physical machines as possible. 

None of the above work is designed for heterogeneous 
multicore architectures. Heterogeneous multicore architectures 
bundle cores of different types into a single physical processor; 
an example is Intel’s Performance Hybrid Architecture, which 
integrates two types of cores—faster yet more power-hungry 
Performance-cores (P-cores) and slower yet more power-
efficient Efficient-cores (E-cores). Another example is ARM’s 
big.LITTLE technology. Processors with heterogeneous cores 
have been widely used in many devices such as smart phones 
and computers; the number of cores per processor have been 
increasing steadily, from single digit to double digits or even 
hundreds. NFV can benefit from such hybrid and strong 
computing power. However, there has been little effort taken in 
this research direction, which motivates us to study NFV with 
heterogeneous multicores considered explicitly. 

In this paper, we focus on load-balancing and prudent 
deployment of affinity-aware VNFs for heterogeneous 
multicore systems. Although our method can be extended to a 
system with three or more types of cores, we focus on a system 
with cores of two types, say P-cores and E-cores, for two-fold 
reasons: First, the majority of heterogeneous multicore CPUs 
available in the market are equipped with two types of cores; 
second, it is for simplicity of exposition. 
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As we measure and show in Fig. 1, the end-to-end latency of 
a compute-bound SFC running on a P-core is quite different 
from the SFC latency running on an E-core. This implies the 
importance of affinity awareness: A VNF that either is 
computationally intensive or has a strict requirement for latency 
must run on a P-core. In addition to affinity awareness, we also 
consider load-balancing and prudence, which aims to distribute 
the workload of a given set of VNFs to multiple cores for better 
responsiveness, while preventing cores from being underused. 
VNFs deployed to underused cores should be re-deployed to 
fewer cores to reduce the operational cost. To achieve the above 
requirements in real time, we propose an algorithm called Four-
Class Filling (FCF) with a time complexity of 𝑂ሺ𝑛 log 𝑛ሻ and 
an approximation ratio of 3/4 under some condition. 

 

Fig. 1. The end-to-end latency of a compute-bound SFC we measure. 

The remainder of this paper is organized as follows. In 
Section II, we formulate the load-balancing and prudent VNF 
deployment problem for a heterogeneous multicore system. We 
present the Four-Class Filling (FCF) algorithm we develop for 
the VNF deployment problem in Section III. Section IV 
presents both measurement results of our implementation and 
simulation results of our algorithm. We present concluding 
remarks in Section V. 

II. PROBLEM FORMULATION 

The problem we consider in this paper is load-balancing and 
prudent VNF deployment tailored to a heterogeneous multicore 
system. Roughly speaking, we take the advantage of affinity 
awareness on such a system and aim to distribute the workload 
of VNFs evenly to multiple cores (for better responsiveness), 
while not utilizing too many cores (for lower operational cost). 
For simplicity of exposition, we focus on a heterogeneous 
multicore system with cores of two types, although our method 
can be extended to a system with more than two types of cores. 

We consider a heterogeneous multicore machine that has a 
set of available E-cores (denoted by 𝐸 ൌ ሼ1,2, … , |𝐸|ሽ) and a 
 

1 We assume that 𝑠 is smaller than the threshold of a P-core, for each 𝑛 ∈
ℕ. Otherwise, an exclusive P-core is allocated to the VNF for load-balancing. 

set of available P-cores (denoted by 𝑃 ൌ ሼ|𝐸|  1, |𝐸| 
2, … , |𝐸|  |𝑃|ሽ). In total, there are |𝑂| ൌ |𝐸|  |𝑃| available 
cores, which is denoted by 𝑂 ൌ ሼ1,2, … , |𝑂|ሽ. A P-core has 
higher computing power than an E-core. The (computing) 
capacity of core 𝑜 is 

 𝑐𝑜 ൌ ቄ
𝐶୫ୟ୶ if core 𝑜 is a E-core
𝑘 ⋅ 𝐶୫ୟ୶ if core 𝑜 is a P-core

 (1)

where 𝑘 is a constant greater than one. 
We are given a set of VNFs, each of which is required to be 

deployed to one of the available cores under a few constraints. 
The set of these VNFs is denoted 𝑁 ൌ ሼ1,2, … , |𝑁|ሽ. Each VNF 
has its own size or called workload, which is the amount of 
computing power it needs. The workload of VNF 𝑛 is denoted 
by 𝑠, 𝑛 ∈ 𝑁.1 A larger VNF means its workload is heavier. 

Each VNF must be deployed to a core with enough residual 
capacity. In addition, if a VNF is computationally intensive or 
it has a strict requirement for latency and cannot fulfill by a E-
core, the VNF must be deployed to a P-core. Such a VNF is 
called P-affined. The usage of each core cannot exceed the 
core’s capacity. The usage of core 𝑜 is denoted by 𝑢, 𝑜 ∈ 𝑂. 
For any 𝑛 ∈ 𝑁, deploying VNF 𝑛 to a core increases the usage 
of the core by 𝑠 and decreases the residual usage by 𝑠. 

According to their usage, cores are categorized into unused 
cores and used cores; used cores are further categorized into 
underused cores and well-used cores. A used core is a core with 
positive usage and an unused core is a core with zero usage. An 
underused core is a used core whose usage is below a threshold, 
whereas a well-used core is a used core whose usage is equal or 
greater than the threshold. The usage threshold of core 𝑜, 𝑜 ∈
𝑂, is set to be: 

 𝑡𝑜 ൌ ቄ
𝐶୫୧୬ if core 𝑜 is a E-core
𝑘 ⋅ 𝐶୫୧୬ if core 𝑜 is a P-core

 (2)

The margin of a core is defined as the threshold value of the 
core subtracted by its usage. Positive margin implies underused 
or unused, whereas non-positive margin implies well-used. 

VNF deployment should not result in multiple underused 
cores. Having many underused cores implies plenty of residual 
capacity and hence it is easy to re-deploy VNFs to fewer cores. 
Using a reduced number of cores, CPUs, or virtual machine 
instances can reduce the operational cost. Once VNF 
deployment is done, there should exist zero or one underused 
core. This requirement is referred to as the prudence constraint. 

For load-balancing, all VNFs in 𝑁 should be deployed to as 
many cores as possible so as to distribute the workload of these 
VNFs evenly. Combining load-balancing and prudence, all 
VNFs in 𝑁 should be deployed to as many cores as possible 
while keeping all (except at most one) of these cores well-used. 

The VNF deployment problem we study in this paper aims to 
maximize the number of cores to which a given set of VNFs are 
deployed, while satisfying 1) the usage of each core cannot 
exceed its capacity, 2) the number of underused cores is at most 
one, and 3) all the P-affined VNFs must be deployed to P-cores. 
Equivalently, we aim to maximize the number of well-used 
cores, while having at most one underused core and deploying 



 

all P-affined VNFs to P-cores. The VNF deployment problem 
we study is a modified version of the bin covering problem. The 
differences of these two problems are three-fold: First, the VNF 
deployment problem involves two types of cores/bins (i.e., E-
cores and P-cores), whereas the bin covering problem has a 
single type of bins. Second, the usage of each core in the VNF 
deployment problem is bounded below (by the threshold) and 
bounded above (by the capacity), whereas the bin size in the bin 
covering problem is only bounded from below. Third, the bin 
covering problem does not consider affinity. 

III. OUR ALGORITHM: FOUR-CLASS FILLING 

To solve the load-balancing and prudent VNF deployment 
problem in an affinity-aware, fined-grained, and efficient way, 
we propose the four-class filling (FCF) algorithm, which 
consists of three stages—preprocessing, filling, and 
postprocessing. What follows present how FCF works, as well 
as the complexity and the approximation ratio of FCF. 

A. The Preprocessing Stage 

Initially, the usage of each core is zero; that is, 𝑢 ൌ 0, 𝑜 ∈
𝑂. All VNFs in 𝑁 are sorted and numerated in the descending 
order of their workload. Based on the workload, all VNFs are 
divided into the following four classes: 

 

𝑊 ൌ ሼ𝑛 ∈ 𝑁: 𝐶୫୧୬  𝑠  𝑘 ⋅ 𝐶୫୧୬  or  𝑛 is P-affinedሽ 

𝑋 ൌ ቄ𝑛 ∈ 𝑁:
ଵ

ଶ
𝐶୫୧୬  𝑠 ൏ 𝐶୫୧୬ቅ  

𝑌 ൌ ቄ𝑛 ∈ 𝑁:
ଵ

ଷ
𝐶୫୧୬  𝑠 ൏

ଵ

ଶ
𝐶୫୧୬ቅ  

𝑍 ൌ ቄ𝑛 ∈ 𝑁: 0 ൏ 𝑠 ൏
ଵ

ଷ
𝐶୫୧୬ቅ  

(3)

Note that a P-affined VNF is categorized into W-class, 
regardless of its workload. The VNFs in these four classes are 
sorted in the descending order of their workload, respectively. 

The preprocessing stage pre-allocates W-class VNFs to P-
cores. An unused P-core is allocated the VNFs in 𝑊 in order, 
one at a time, until either the core’s margin is no greater than 
𝐶୫୧୬  or the core’s residual capacity is smaller than the next 
VNF’s workload. If there are W-class VNFs unallocated, the 
same allocation process repeats to a new unused P-core. 

The preprocessing stage ends up leaving four types of 
cores—underused P-cores, (unused) E-cores, well-used P-
cores, and unused P-cores. The sets of cores of these four types 
are denoted by 𝑃, 𝐸, 𝑃ு, and 𝑃, respectively. The filling stage 
will deal with cores of the first two types. There is no need to 
fill well-used P-cores with extra VNFs2. Utilizing unused P-
cores is deferred to the postprocessing stage3, if necessary. 

B. The Filling Stage 

The filling stage allocates the VNFs in 𝑁ᇱ ൌ 𝑋 ∪ 𝑌 ∪ 𝑍 to 
the cores in 𝑂′ ൌ 𝑃 ∪ 𝐸, iteratively. An iteration deals with the 
core in 𝑂′ with highest priority. During an iteration, each VNF 
allocated to the core is removed from 𝑋, 𝑌 or 𝑍; at the end of 
an iteration, the highest-priority core is removed from 𝑂′. The 
priority of cores is set as follows: Underused P-cores have 

 
2 This is because well-used cores have satisfied all constraints. 
3 This is because we tend to keep as many P-cores unused as possible. They 

are reserved for future use, especially for P-affined VNFs. 

higher priority than unused E-cores4; among the cores of the 
same type, larger residual capacity implies higher priority. An 
iteration has two phases. If 𝑋 ∪ 𝑌 ് ∅ and 𝑍 ് ∅, an iteration 
starts with phase 1; otherwise, phase 1 is skipped and only 
phase 2 is executed. 

Phase 1 first does XY-filling repeatedly: The highest-priority 
core is filled with either the largest VNF in 𝑋 or the two largest 
VNFs in 𝑌, whichever keeps margin positive and whichever is 
larger. This XY-filling process repeats until either the next XY-
filling will make the core’s margin non-positive or  𝑋 ∪ 𝑌 ൌ ∅. 
After that, phase 1 does reverse Z-filling repeatedly: The core 
is filled with the VNFs in 𝑍, one at a time, in the ascending 
order of workload, until 1) the core’s margin becomes non-
positive, 2) the core’s residual capacity is too small to 
accommodate the next VNF, or 3) 𝑍 ൌ ∅. In the first two cases, 
this iteration completes with no need to execute phase 2; in the 
last case, this iteration moves forward to phase 2. 

Phase 2 executes only if either 𝑋 ∪ 𝑌  or 𝑍  is empty. 
According to the sizes of 𝑋 ∪ 𝑌  and 𝑍 , phase 2 has three 
conditional branches: 
 𝑋 ∪ 𝑌 ൌ ∅ and 𝑍 ് ∅: Z-filling is applied to the highest-

priority core repeatedly. The core is filled with the VNFs 
in 𝑍 in the descending order of workload, one at a time, 
until either 1) the core’s margin becomes non-positive, 2) 
the core’s residual capacity is too small to accommodate 
the next VNF, or 3) 𝑍 ൌ ∅. 

 𝑍 ൌ ∅  and 𝑋 ∪ 𝑌 ് ∅ : XY-filling is applied to the 
highest-priority core repeatedly. The core is filled with 
either the two largest VNFs in 𝑋 or the three largest VNFs 
in 𝑌 , whichever makes the usage no larger than the 
capacity and whichever is smaller. XY-filling repeats until 
either the core’s margin becomes non-positive or  𝑋 ∪
𝑌 ൌ ∅. In the case when XY-filling cannot allocate any 
VNF to the core, we switch to use the SI algorithm [1] to 
fill the core with extra VNFs in 𝑋 ∪ 𝑌. 

 𝑋 ∪ 𝑌 ൌ 𝑍 ൌ ∅: There is no need to do anything, because 
all VNFs in 𝑋 ∪ 𝑌 ∪ 𝑍 have been allocated to cores. 

After running anyone of the branches, phase 2 completes and 
so does this iteration. 

The filling stage ends up either having all VNFs allocated or 
having a non-empty set of unallocated VNFs, which is denoted 
by 𝑁′′. In the latter case, all cores in 𝑂ᇱ ൌ 𝑃 ∪ 𝐸 have become 
well-used during the filling stage; only the unused P-cores (i.e., 
the cores in 𝑃) should be used to allocate the VNFs in 𝑁′′. 

C. The Postprocessing Stage 

If 𝑁ᇱᇱ ് ∅  (because there are VNFs in 𝑋 ∪ 𝑌 ∪ 𝑍  that 
remains unallocated at the end of the filling stage), the 
postprocessing stage allocates the VNF in 𝑁ᇱᇱ to the cores in 
𝑂ᇱᇱ ൌ 𝑃 in the same way as the filling stage, except the VNFs 
in 𝑁ᇱᇱ are re-categorized into the following three classes 

 
𝑋′′ ൌ ቄ𝑛 ∈ 𝑁′′:

ଵ

ଶ
𝑘 ⋅ 𝐶୫୧୬  𝑠 ൏ 𝑘 ⋅ 𝐶୫୧୬ቅ  

𝑌′′ ൌ ቄ𝑛 ∈ 𝑁′′:
ଵ

ଷ
𝑘 ⋅ 𝐶୫୧୬  𝑠 ൏

ଵ

ଶ
𝑘 ⋅ 𝐶୫୧୬ቅ  

(4)

4 This is because it is not allowed to have multiple underused cores in the 
VNF deployment problem. 



 

𝑍′′ ൌ ቄ𝑛 ∈ 𝑁′′: 0 ൏ 𝑠 ൏
ଵ

ଷ
𝑘 ⋅ 𝐶୫୧୬ቅ  

instead of X-class, Y-class, and Z-class shown in (3). 

D. Complexity and Approximation Ratio 

Due to the space problem, we present the computational 
complexity and the approximation ratio of FCF without delving 
into too many details. 

The complexity of the pre-processing stage is 𝑂ሺ|𝑁| ⋅
log|𝑁|ሻ because of sorting. The complexity of the filling stage 
and the post-processing stage is 𝑂ሺ|𝑁ᇱ|ሻ  and 𝑂ሺ|𝑁ᇱᇱ|ሻ , 
respectively, because both XY-filling and Z-filling allocate at 
least one VNF to a core at a time. Knowing the complexity of 
FCF’s stages, it is straightforward to get the complexity of the 
entire FCF, as shown in Theorem 1. 

Theorem 1. FCF is of complexity 𝑂ሺ𝑛 log 𝑛ሻ , where 𝑛 ൌ
|𝑁| is the total number of VNFs. 

Due to the space problem, we present the approximation ratio 
of FCF without showing any derivation. 

Theorem 2. If 𝑊 ൌ ∅  and 𝐶୫ୟ୶  2 ⋅ 𝐶୫୧୬ , FCF has an 
approximation ratio of 3/4. 

IV. PERFORMANCE EVALUATION 

As will be shown in Section IV.A, we validate the 
effectiveness of our implementation and our proposed FCF 
algorithm through a small-scale, real-world experimental 
measurement. In addition, as will be shown in Section IV.B, by 
simulation we compare the performance of our proposed FCF 
algorithm with an existing algorithm for scenarios at medium 
scale. 

A. Experimental Implementation and Measurement 

1) Implementation Overview 
As shown in Fig. 2, our experiment has three computers, each 

equipped with one or two 10 gigabit network interface cards 
(NICs). One of the three computers is a server, which provides 
network services; the other two computers act as traffic 
generators. The server equipped with Intel Core i7-12700 
processor (which has eight P-cores and four E-cores) executes 
our proposed FCF algorithm and OpenNetVM [3] to manage 
deployment and execution of VNFs. The traffic generators 
inject packet flows to the server, by using Pktgen [4]. 

 

Fig. 2. Overview of our hardware implementation. 

On the server, we utilize a technology called process 
isolation to limit, account for, and isolate the running VNFs. 
The injection rate and the end-to-end latency of each SFC are 
measured by a software module we develop in [5]. Based on the 
injection rate measured, the workload of each VNF is predicted, 
in real time. VNF workload is predicted by a supervised-
learning-based method we devise in [2]. To obtain a training 
dataset required by supervised learning, we develop an 
instruction-level tool to collect instruction statistics, Intel 
Performance Counter Monitor (PCM) [15] metrics, and usage 
of cores (with the help of a runtime code manipulation system 
called DynamoRIO [16]). 

2) Experimental Measurement 
In the experiment, all packets injected to the server are 

processed through an SFC consisting of two VNFs; packets first 
go to the Busy forward VNF and then move to the AES 
encryption VNF. Busy forward is a VNF we develop (by 
modifying the VNF available in [6]) for workload 
customization; AES encryption is an open-sourced VNF 
available in [7]. By process isolation technology, two P-cores 
and two E-cores are reserved for the two VNFs; other processes 
are not allowed to use these cores. 

 

Fig. 3. Throughput measured. The packet injection rate keeps low by the 7th 
second and then rises gradually to a high rate. 

We compare the FCF algorithm with two fixed schemes—
VNFs on a P-core and VNFs on an E-core. As shown in Fig. 3, 
it is observed that at a low injection rate (by the 7th second), 
these three schemes perform the same because even a single E-
core can afford the low workload of the two VNFs. As packets 
are injected at a high rate, the workload exceeds the capacity of 
a single core and therefore these three schemes perform 
differently: FCF performs best because it allocates the two 
VNFs to two cores and hence the workload is distributed. On 
the contrary, putting all VNFs on an E-core performs worst 
because there is no load-balancing and an E-core is slower than 
a P-core. 

B. Simulation Results 

By simulation, we compare the performance of our proposed 
FCF algorithm with the local search algorithm (LSA) [8]. The 
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NIC

NIC

NIC

server
traffic generator 1 (TG1)

traffic generator 2 (TG2)



 

LSA first assigns VNFs to cores randomly and then iteratively 
move a VNF from the busiest core to the lowest-usage core if 
the usage of the new busiest core (after this movement) is 
smaller than that of the busiest core in the previous iteration. 

The performance metrics of interest include the load-
balancing factor, the number of used cores, and the sum of 
excess usage. The load-balancing factor is defined as the 
number of well-used cores subtracted by the number of 
underused cores, in order to reflect that well-used cores are 
beneficial from the load-balancing aspect and underused cores 
are costly from the prudence aspect. The excess usage of core 
𝑜 is defined as ሺ𝑢 െ 𝑡ሻା, which is the amount of usage that 
exceeds the threshold value. The sum of excess usage is the 
total amount of excess usage of all cores, which is 
∑  ሺ𝑢 െ 𝑡ሻା

∈ை . Unlike Section IV.A, throughput is not 
within the scope of interest in this subsection; this is because 
the total workload of VNFs is set to be less than the total 
capacity of cores and thus all the algorithms used in this paper 
result into the same throughput in the long run. 

In the simulation, the number of E-cores is fixed at 8, but the 
number of the P-cores varies: The scenarios with 4, 6, and 8 P-
cores are considered.5 The number of instances per scenario is 
1000. 𝐶୫ୟ୶ is set/normalized to 100, 𝐶୫୧୬ is set to 50, and 𝑘 is 
set to 1.5. In each scenario, the number of VNFs per service 
function chain (SFC) is set to 5 and the number of SFCs is set 
to be equal to the number of P-cores. Among the VNFs, the 
number of W-class VNFs is half of the number of P-cores, the 
number of X-class VNFs is equal to the number of P-cores, the 
number of Y-class VNFs is equal to the number of P-cores, and 
the remaining VNFs are all Z-class VNFs. The workload of 
VNFs in each class is uniformly distributed in-between the 
lower bound and the upper bound defined in (3). 

 

Fig. 4. Load-balancing factor. 

Fig. 4 shows the simulation results in terms of the (averaged) 
load-balancing factor; the larger load-balancing factor, the 
better. It is observed that our proposed FCF algorithm 

 
5  These numbers of cores are in accordance with Intel Core i9-12900 

processor, which has eight E-cores and eight P-cores. 

consistently outperforms LCA in load-balancing factor, 
regardless of the number of P-cores. 

In terms of the number of used cores, Fig. 5 shows that LSA 
consumes all P-cores and all E-cores in all the three scenarios. 
However, a considerable number of cores consumed under LSA 
are underused; this explains why LSA performs poorly in terms 
of load-balancing factor. On the contrary, FCF allocates VNFs 
to less cores that LSA does. A reason behind is that FCF 
considers both load-balancing and prudence, which increases 
the number of well-used cores but prevents cores from 
becoming underused; on the contrary, LSA tends to use all the 
cores. From the point of view of operational cost, FCF 
outperforms LSA. 

 

Fig. 5. The number of used cores. 

 

Fig. 6. The sum of excess usage. 

We also show the simulation results in terms of the sum of 
excess usage; the smaller excess usage, the better. In contrast to 
load-balancing factor which is a discrete indicator (because a 
used core is either well-used or underused), the sum of excess 
usage is a continuous indicator (that reflects the total amount of 



 

excess usage compared to the ideal case in which the usage of 
each used core is equal to its threshold value). As shown in Fig. 
6, FCF performs better than LSA, because the sum of excess 
usage caused by FCF is smaller than that of LSA. A summary 
can be drawn from what is observed in Fig. 4, Fig. 5, and Fig. 
6. Compared with LSA, FCF not only distributes the workload 
over used cores more evenly, which implies better load-
balancing, but also uses fewer cores, which results in better 
prudence (and lower operational cost). 

V. CONCLUSION 

This paper studies the load-balancing and prudent VNF 
deployment problem for heterogeneous multicore systems. We 
consider a commodity machine equipped with two types of 
cores and develop a fast yet efficient algorithm. The FCF 
algorithm we propose is of complexity 𝑂ሺ𝑛 log 𝑛ሻ and has an 
approximation ratio of 3/4 under some condition. In addition to 
developing the FCF algorithm, we implement an NFV platform 
equipped with two types of cores. We validate the effectiveness 
of our method, through implementation and measurement. 
Besides, extensive simulation results show that our algorithm 
performs very well in load-balancing factor, the number of used 
cores, and the sum of excess usage. 
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