The Effectiveness of *GLOSS* for the Text Database Discovery Problem

Lius Gravano, Hector Garcia-Molina Stanford University

Anthony Tomasic Princeton University

Proceeding of ACM SIGMOD Conference, 1994

NTHU db-lab

Outline

- Introduction
- GLOSS: Glossary of Servers Server
- Experimental Framework
- Improving GLOSS
- Conclusions

Reference

The Efficacy of GLOSS for the Text Database Discovery Problem

Lius Gravano, Hector Garcia-Molina, Anthony Tomasic

Stanford University Technical Note Number STAN-CS-TN-93-2

Introduction

- Motivation
 - find a scalable solution to the text database discovery problem
 - obvious solutions
 - » forwarding the queries to all known databases
 - » central full index for all of the documents
- · Main idea
 - suggest potentially good databases to search
 - » present the query to server to select a set of promising databases
 - » evaluate the query at the chosen databases
 - estimate by the word-frequency information for each database
 - » how many documents at that database actually contain each word

NTHU db-lab

Introduction

- Extended semantics
 - exhaustive search
 - all-best search
 - only-best search
 - sample search
- Example 1. find Subject computer

GLOSS: Glossary of Servers Server

- · Query representation
 - atomic subquery is a keyword field-designation pair
 - only consider boolean `and` queries
 - » find Author Knuth and Subject computer
- · Database histograms
 - DBSize(db): the total number of documents in database db
 - -freq(t, db): the number of documents in db that contain t
- Estimate of the result size of a query
 - ESize/Est(q, db) => RSize(q, db)
 - Chosen/Est(q, DB) = { db in DB | ESize/Est(q, db) > 0 ^ ESize/Est(q, db) = max ESize/Est(q, db`), for all db` in DB }

NTHU db-lab

GLOSS: Glossary of Servers Server

- Estimators
 - ESize/Ind(find t1^..^tn, db) = [freq(t1,db)/DBSize(db)]*..* [freq(tn,db)/DBSize(db)]*DBSize(db)
 - » keywords appear in the different documents of a database following independent and uniform probability distributions
 - ESize/ $Min(find\ t1^{...}tn,\ db) = min[freq(ti,db)], for i = 1..n$
 - ESize/Binary(find t1^...^tn, db) = 0, if freq(ti,db) = 0 for some i= 1, otherwise
 - example 2. find Author Knuth and Subject computer

GLOSS: Glossary of Servers Server

• Evaluation criteria

- compare the prediction of the estimator against what actually is the `right subset` of DB to query
- C/ex : Relevant <= Chosen/est</p>
- C/ab : Best <= Chosen/est
- C/ob: Chosen/est <= Best
- C/sm: Chosen/est <= Relevant

• Performance metrics

- $Success(C,Est) = 100 * [| {q in Q | Chosen/est satisfies C} | / |Q|]$
- -Alpha(C,Est) = 100 Success(C,Est)
- $Beta(C,Est) = Success(C,Est) 100 * [| {q in Q | Chosen/est strictly satisfies C} | / |Q|]$

NTHU db-lab

Experimental Framework

Configuration

- query traces from the FOLIO library IR system
- Relevant(q, DB) = { db in DB | RSize(q, db) > 0 }, Best(q, DB)
- *Ind*: tend to underestimate the result size of the queries

• Results

- distinguish two databases
 - » Chosen/Ind = 0 only if Relevant = 0 (or the case of Best = 0)
 - » Success(C/ex, Ind) are much lower than others
 - » the more unrelated subject domains of the databases considered were, the better *Ind* behaved in distinguiching the two databases
- evaluate over six databases

Experimental Framework

NTHU db-lab

Improving GLOSS

- Elimination of `Subject` index
 - Subject is a compound index built by merging together other `primitive` indexes
 - implicit `or` query : find Subject computer
 - » **find** *Title* computer **or** *Abstract* computer **or** ...
 - two estimates of freq(Subject <w>, <db>)
 - » lower bound : max [freq(index(i) <w>, <db>)]
 - » upper bound : sum [freq(index(i) < w>, <db>)]
- Reduction of histograms
 - threshold : drop the entries of very low frequency
 - classification : define a set of ranges of frequencies
- More flexible definitions

Improving GLOSS

NTHU db-lab

Conclusions

Contributions

- a formal framework for the text database discovery problem
- concept of routing queries to appropriate information sources based on previously collected frequency statistics about sources
- some estimators that may be used to make decisions
- an experimental evaluation according to different semantics

• Future research

- hybrid estimator for GLOSS
 - » C/ex: Est/Binary; C/ab, C/ob, C/sm: Est/Ind
- incorporate the cost of charge into the computation of ESize/est
- extend the boolean model to the vector-space retrieval model

Generalizing GLOSS to Vector-Space Databases and Broker Hierarchies *Proceeding of VLDB Conference, 1995*