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How to mine closed frequent itemsets?

(1123456

CHARM [Zaki: sdm02, kdd03
— | T-tree

S i | Ax1345 Cx123456 Dx2456 1356 Wif345
— Pruning
ACx1345 ADxd5 ATx135 AWx1M45  CDx2456 CTx1356 CWx12345 DTx56 DWx245 TWx135
ACDM& ACTx135 ACWx1345 ADWxdS ADTKE ATWx135 COTx56 CDWx245% CTWK13§ D'i'w}{fr
ACDTx5 ACDWx45  ACTWx135 ADTWx5 COTWx5

t(X)=t(Y) - c(X)=c(Y)=c(XIY)

t(X)Ot(Y) - c(X)zc(Y), but c(X)=c(XOY)
t(X)Ot(Y) - c(X)zc(Y), but c(Y)=c(XOY)
Otherwise — c(X)£c(Y)#c(XOY) P4
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What isa Closed Freguent Sequence?

» CloSpan [Yang& Han: sdm03] EEE‘ 1D. | Sequence

. . \(af)(d)(e)(a))
— Lexicographic sequence tree 7 ((e){a) (b))
— Pruning 2 w(e)(abf)(bde))

Given two sequences, s C 8 and also I(D,) = Z(Dgy),
then Yy, support(s ¢ ~v) = support(s’ ¢ ).

 Early Termination by Equivalence

=2

\

<fa)>:3 <h>2  wds2 <g>3 <f fi=2

/N

<l afp2 <aib)>2 <afdi=2 <a) e)=2 <iela)>3 <(eibi>? < fHde2 <{fie)=2

< af jidi>:2 <(af)fe)s:2 <l e)fapbh)2 P5
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How to mine closed frequent sequences?

e Stage 1. Generate candidate sequences
— PrefixSpan + Pruning! = Prefix sequence lattice
e Stage 2: Eliminate non-close sequences
— Hashing: size, s-id sum
 Support equality
« Subsumption check

(a] backward sub-pattern (b)) backward super-pattern P6
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How well does CloSpan perform?
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K Can we mine closed frequent sequences
without candidate maintenance?

Sequence identifier Sequence

 BIDE 1 CAABC
- . . 2 ABCBH

« Forward extension events 4 ABBCA

» Backward extens OT/e/v/e/n/tV"' %
— Closurecheck i

* No FE I N
e NoBE 2> ases {aca’y (aa’y {8043

— Pruning! 4
. BackScan 2 ;
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without candidate maintenance?

Sequence identifier Sequence
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e LL,=A,, LL,=B,LL,=C, Sk i il o W7
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How does BI DE improve the mining efficiency?
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How does BI DE improve the mining efficiency?

« BackScan: ABC, C,A;A,BC,DA,C,E
— LF: thei-th last-in-first appearance
e LF,=A, LF,=B,LF,=C,
— SMP:: the 1-th semi-maximum period

‘e o
., R
“y .
......
......
---------
------------------
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How does BI DE improve the mining efficiency?

« BackScan: ABC, C,A;A,BC,DA,C,E
— LF: thei-th last-in-first appearance
e LF,=A, LF,=B,LF,=C,
— SMP: thel th semi-maximum period

’0
e
4

— Stop projection!

P.10
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How does BI DE improve the mining efficiency?

BIDE (SDB,min_sup, FCS)
Input: an mput sequence database DB, a mimimum support threshold min_sup

Output: the complete set of frequent closed sequences, FCS
I FCS=0,

2 Fl=frequent 1-sequences(SDB, min_sup);

3. for {ﬂﬂch -sequence f1 m Fl)do

4 . SDF ""ﬁﬁéﬁﬁﬂ"}'ﬁrﬂ]eclﬁd database (SDB);

.
o*

&: for(each f1 in FI)do

-
.
e

6 fgx,ﬁumfzmg,g,ﬁﬂﬁ@‘“]f

T BEI=backward extension check (f1, SDB"):
8: call bide(SDB", {1, min_sup, BEI, FCS};
9: return FCS;

P.10
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How does BI DE improve the mining efficiency?

bide (S, SDB, S,, min_sup, BEI, FCS)

‘Input: 1pmjected sequence database §, SDB, a prefix sequence §,,
a minimum support threshold min_sup, and the number of backward
extension items BE[

Output: the current set of frequent glosed sequences, FCS

10: LFI= locally frequent items (S, SDB);

1 FEL= i L Yz = sp @ (8 -

P T HEHFEIF =) - ;

Wi, FCSFCS UG} o
14 for {e'iEH'}"'iﬁ"'EF Iy do
15: 'SF = {‘{ [=:

16: SDBF""— pseudo projected database (S, SDB, §, ):

17: for{eachi m LFIjdo

18: [ if (BBackScan(S,, SDB™)) -
19: BEI=backward extension check (S, SDB Y
20: call bide(SDB®, 8, min_sup, BEI, FCS); 510
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Does BIDE perform much better?

 BIDE/CloSpan significantly outperforms
PrefixSpan/SPADE when support threshold islow

 BIDE consumes much less memory and can be an
order of magnitude faster than CloSpan

 BIDE haslinear scalability in terms of data size

e BackScan and ScanSkip techniquesarevery
effective in enhancing the performance

P.11
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Does BIDE perform much better?

| ]
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 BIDE/CloSpan significantly outperforms
PrefixSpan/SPADE when support thresh

* BIDE consumes much qu
order of magnitudefési

&
-
=3
IS
-
B
D
®
<
@
<

-
-
-
-
-
-
-

e i
p—TT
—
—

l
0.02 0.018 0.016 0.014 0.012 (.01

Support threshold (in %) P.11



Closed Frequent Sequence Mining

Concluson Remarks

e Closed Freguent hasthe same expressive power as
All Frequent, but provides more compact results
and likely better efficiency.

* |Integrated optimization techniques for database
projection, search space pruning, and pattern-
closure checking arerequired.

* Move candidate-maintenance-and-test paradigm to
a new paradigm without candidate maintenance

P.12
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a4 i

My Questions...
o CloSp an Seq ID. | Sequence
0
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~ Dewi@>=Pecom@>=Petiar = igg((gf’&ﬁf

e Bl
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DE

How to efficiently compute or maintain MP,/SVIP;?
Does It easily adapt BIDE to sequences of itemsets?

 What isthe difference between Closed Frequent
Sequences and Non-trivial Repeating Patter ns?
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