
CS5500 Computer Graphics 
Graphics Pipeline (Parts 2 of 3) 

 
Assigned: May 8, 2006 
Due: 23:59 May 21, 2006 (10% penalty for each day late) 
 
Extend your graphics pipeline to handle: 
 (1) Triangles in 3D world space 
 (2) Lighting using the Phong illumination model 
 (3) Rasterization and Gouraud shading 
 (4) Hidden surface removal using the Z buffer  
 
The input file to your program is now extended to: 
 eye: xEye, yEye, zEye 
 lookat: xLook, yLook, zLook 
 up: xUp, yUp, zUp 
 Perspective: vFOV, near, far 
 display: width, height 
 
 light_pos: x, y, z, w 
 light_color: r, g, b 
 
 translate: x, y, z     <--- Optional 
 rotate: angle, xAxis, yAxis. zAxis <--- Optional 
 color: r, g, b 
 material: Ka, Kd, Ks, shininess 
 triangle: 
  normal: nx1, ny1, nz1 
  vertex: x1, y1, z1 
  normal: nx2, ny2, nz2 
  vertex: x2, y2, z2 
  normal: nx3, ny3, nz3 
  vertex: x3, y3, z3 
 triangle: 
  ... 
 
 



TASKS 
(a) When you transform a vertex from 3D world space to 2D screen space, remember 

to compute its Z as well.  The Z values will be used for hidden surface removal. 
(b) In the above example, the same color is set to all 3 vertices of the triangle. 

However, it is possible to set a different color to each vertex by adding a    
"color: r, g, b" line before each vertex. 

(c) Apply Phong illumination model to shade each triangle vertex.  Store the shaded 
color with the vertex for the next step (rasterization). 

(d) Once you have computed the screen coordinates for all 3 vertices of the triangle, 
you may now fill its interior by scan line conversion.  Note that it is not required 
to use Bresenham's algorithm to do the edge walking (for setting up the span for 
each scan line). 



 
CS5500 Computer Graphics 

Graphics Pipeline (Part 3 of 3) 
 
Assigned: May 8, 2006 
Due: 23:59 May 28, 2006 (10% penalty for each day late) 
 
Extend your graphics pipeline to handle perspectively correct texture mapping. 
The input file to your program is now extended to: 
 eye: xEye, yEye, zEye 
 lookat: xLook, yLook, zLook 
 up: xUp, yUp, zUp 
 Perspective: vFOV, near, far 
 display: width, height 
 
 light_pos: x, y, z, w 
 light_color: r, g, b 
 
 translate: x, y, z     <--- Optional 
 rotate: angle, xAxis, yAxis. zAxis <--- Optional 
 color: r, g, b 
 material: Ka, Kd, Ks, shininess 
 texture2d: filename.ppm 
 triangle: 
  normal: nx1, ny1, nz1 
  texcoord: u, v 
  vertex: x1, y1, z1 
  normal: nx2, ny2, nz2 
  texcoord: u, v 
  vertex: x2, y2, z2 
  normal: nx3, ny3, nz3 
  texcoord: u, v 
  vertex: x3, y3, z3 
 triangle: 
  ...  
 
TASKS 
(e) The texture image is stored in the PPM format.  See the example code in the data 

folder to read and write image files in the PPM format. 
(f) Mip-mapping is not required in this project. 
(g) You may use either the nearest neighbor or the bilinear interpolation for texture 

filtering. 
 


	TASKS
	TASKS

