Table 14.2 lists each predefined global variable available to surface shaders, together with its data type, storage class and a summary of its meaning. Different sets of global variables are available to other shader types. They appear in Table 14.3.

Type	Name	Storage Class	Purpose
color	<u>Cs</u>	varying/uniform	Surface color (input)
color	Os	varying/uniform	Surface opacity (input)
point	<u>Os</u> <u>P</u>	varying	Surface position
point	dPdu	varying	Change in position with <i>u</i>
point	\overline{dPdv}	varying	Change in position with v
point	N	varying	Surface shading normal
point	_ Ng	varying/uniform	Surface geometric normal
		7 7 6/	Sarrace geometric normar
float	<u>u,v</u>	varying	Surface parameters
float	<u>du,dv</u>	varying/uniform	Change in u,v across element
		7 - 6,	example in who deroos element
float	<u>s,t</u>	varying	Surface texture coordinates
color	<u>L</u> <u>Cl</u>	varying/uniform	Direction from surface to light source
color	<u>Cl</u>	varying/uniform	Light color
noint	,		B:
point	1	varying	Direction of ray impinging on
1	0.		surface point (often from camera)
color	<u>Ci</u> <u>Oi</u>	varying	Color of light from surface (output)
color	<u>Oi</u>	varying	Opacity of surface (output)
point	E	:6	Parities (d
point	<u>E</u>	uniform	Position of the camera

Table 14.2 Global Variables Available to Surface Shaders

Surface color and transparency

 \underline{Cs} and \underline{Os} represent the current surface color and opacity, respectively, as declared in **RiColor**() and **RiOpacity**() and bound to the surface being shaded when it was created.

 \underline{Cs} and \underline{Os} are used as filter values. The color of reflected light from a surface with surface color \underline{Cs} under incident light with color \underline{Cl} is often taken to be $\underline{Cl}*\underline{Cs}$. In other words, each component of \underline{Cs} scales the corresponding component of the incoming light according to the absorption of the surface. \underline{Os} has the same effect on light passing through the surface. Normally, every component of \underline{Cs} and \underline{Os} lies in the range [0,1].

Figure 14.1 Surface position, normal, and parametric derivatives

Surface position and change

The **point** value \underline{P} represents the position of the point being shaded in world space, and \underline{Ng} is the **geometric normal vector**, perpendicular to the surface, at that point. The **shading normal vector** \underline{N} is by default equal to \underline{Ng} , but may be different for shading purposes. If a displacement shader changes the surface normal, it usually works on \underline{N} and leaves \underline{Ng} alone.

Parameter space

The floating-point values \underline{u} and \underline{v} give the position of the current point on the current surface in parameter space. The **points** \underline{dPdu} and \underline{dPdv} are parametric derivatives, giving the derivative of surface position \underline{P} with respect to \underline{u} and \underline{v} , respectively. The surface normal \underline{Ng} is defined to be the cross-product of these two vectors. \underline{u} and \underline{v} always range between exactly 0 and 1 on all surfaces except polygons.

Figure 14.1 illustrates \underline{P} , \underline{Ng} , \underline{dPdu} and \underline{dPdv} . The normal vector \underline{Ng} is the cross product of \underline{dPdu} and \underline{dPdv} by definition.

Texture space

The floating-point values \underline{s} and \underline{t} give the texture-space coordinates of the current point on the surface. They may be used to