Table 14.2 lists each predefined global variable available to surface shaders, together with its data type, storage class and a summary of its meaning. Different sets of global variables are available to other shader types. They appear in Table 14.3. | Type | Name | Storage Class | Purpose | |-------|------------------------|-----------------|--| | color | <u>Cs</u> | varying/uniform | Surface color (input) | | color | Os | varying/uniform | Surface opacity (input) | | point | <u>Os</u>
<u>P</u> | varying | Surface position | | point | dPdu | varying | Change in position with <i>u</i> | | point | \overline{dPdv} | varying | Change in position with v | | point | N | varying | Surface shading normal | | point | _
Ng | varying/uniform | Surface geometric normal | | | | 7 7 6/ | Sarrace geometric normar | | float | <u>u,v</u> | varying | Surface parameters | | float | <u>du,dv</u> | varying/uniform | Change in u,v across element | | | | 7 - 6, | example in who deroos element | | float | <u>s,t</u> | varying | Surface texture coordinates | | | | | | | color | <u>L</u>
<u>Cl</u> | varying/uniform | Direction from surface to light source | | color | <u>Cl</u> | varying/uniform | Light color | | noint | , | | B: | | point | 1 | varying | Direction of ray impinging on | | 1 | 0. | | surface point (often from camera) | | color | <u>Ci</u>
<u>Oi</u> | varying | Color of light from surface (output) | | color | <u>Oi</u> | varying | Opacity of surface (output) | | point | E | :6 | Parities (d | | point | <u>E</u> | uniform | Position of the camera | Table 14.2 Global Variables Available to Surface Shaders ## Surface color and transparency \underline{Cs} and \underline{Os} represent the current surface color and opacity, respectively, as declared in **RiColor**() and **RiOpacity**() and bound to the surface being shaded when it was created. \underline{Cs} and \underline{Os} are used as filter values. The color of reflected light from a surface with surface color \underline{Cs} under incident light with color \underline{Cl} is often taken to be $\underline{Cl}*\underline{Cs}$. In other words, each component of \underline{Cs} scales the corresponding component of the incoming light according to the absorption of the surface. \underline{Os} has the same effect on light passing through the surface. Normally, every component of \underline{Cs} and \underline{Os} lies in the range [0,1]. Figure 14.1 Surface position, normal, and parametric derivatives ## Surface position and change The **point** value \underline{P} represents the position of the point being shaded in world space, and \underline{Ng} is the **geometric normal vector**, perpendicular to the surface, at that point. The **shading normal vector** \underline{N} is by default equal to \underline{Ng} , but may be different for shading purposes. If a displacement shader changes the surface normal, it usually works on \underline{N} and leaves \underline{Ng} alone. ## Parameter space The floating-point values \underline{u} and \underline{v} give the position of the current point on the current surface in parameter space. The **points** \underline{dPdu} and \underline{dPdv} are parametric derivatives, giving the derivative of surface position \underline{P} with respect to \underline{u} and \underline{v} , respectively. The surface normal \underline{Ng} is defined to be the cross-product of these two vectors. \underline{u} and \underline{v} always range between exactly 0 and 1 on all surfaces except polygons. Figure 14.1 illustrates \underline{P} , \underline{Ng} , \underline{dPdu} and \underline{dPdv} . The normal vector \underline{Ng} is the cross product of \underline{dPdu} and \underline{dPdv} by definition. ## Texture space The floating-point values \underline{s} and \underline{t} give the texture-space coordinates of the current point on the surface. They may be used to