
Poster Proceedings of Pacific Graphics (2008)
T. Igarashi, N. Max, and F. Sillion (Editors)

A Particle-Guided Method for Animating Splashing Stream

Water in Real Time

Su-Ian Eugene Lei1 and Chun-Fa Chang2

1National Tsing-Hua University, Taiwan
2National Taiwan Normal University

Abstract

Realistic water representation in computer graphics involves a number of simulation and rendering techniques. In

the case of real-time rendering of water, such calculations need to be simplified in order to achieve an interactive

frame-rate. In this work, we present a framework for rendering stream water, with focus on the effects of turbulent

flow, splashing over irregular terrain and its interaction with dynamic rigid objects. Unlike similar particle-based

methods where each particle in the system is visualized on screen, the particle system in our implementation serves

as guidance to the final visual result. Its purpose is to detect the occurrences of splashing and turbulence. Our

simulation is fast enough to achieve interactive frame-rate, and produces realistic splashing effects commonly

observed in water streams.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The motion and behavior of flowing water is a well-known
phenomenon. As such it is challenging to simulate and ren-
der the effect realistically since any unnatural behavior is
easily discernable to the casual observer.

Many currently employed techniques of visualizing water
effects in interactive applications are based on a near-static
water surface. And to mimic the effect of local interaction
(such as when a bullet penetrates the water surface), they
use a simple particle system or an animated texture to repre-
sent the splashing of water. These visual effects are detached
from the general motion of water body, which means that a
splash from a rock thrown into a static pond or a rapidly
flowing stream will look visually identical, unless the artist
manually specified otherwise. Also water splashes caused by
a jagged riverbed and rapid water flow will be difficult to vi-
sualize in these systems. While visualizing such effects have
attempted before, they are usually animated layers of tex-
tures drawn manually by the artist to mimic these effects,
and does not physically reflects the feature of the terrain.

Our work strives to increase the realism of visualizing
these effects in real-time by unifying them under one par-
ticle system. This particle system simulates the flowing of

Figure 1: Splashing Stream Water. This example shows a

teapot set on a rapidly flowing stream. Notice the splash near

the handle and spout, and the wake downstream.

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

the water stream, detects its interference with rigid objects,
and generates appropriate splashing effects. Thus these ef-
fects will be visually influenced by the characteristics of the
water flow (such as the speed of water current). An imple-
mentation using a simple proof-of-concept motion simula-
tion system [CLCC07] was done previously. This work is an
extension of that concept.

In this work we provide a hybrid approach that employs
a GPU-based guidance particle system and grid-mesh water
surface, to simulate a number of effects ranging from tran-
quil to rapidly flowing water. We focus our work on the in-
teraction between water, terrain and dynamic rigid objects,
and the effects of turbulent flow and splashes.

The particle system we are using is inspired by the work
of Lutz Latta [Lat04]. We modified the system to allow sub-
particle generation and state transition. A set of primary par-
ticles are used to simulate the general water flow, while sub-
particles can be spawned from the primary particles to simu-
late the breakage of water volume rapidly interacting with
rigid objects. Unlike its common usage, this particle sys-
tem we use mainly serves as a reference point of the final
visual result. Most implementation of such a particle sys-
tem visualizes every particle inside the system, treating each
individual particle as a basic building element of the entire
effect. In our implementation however, the particle is em-
ployed as a marker of various events taking place inside the
water stream, such as collision, foaming, splashing etc. This
is achieved by state transitions (section 3.3) within each par-
ticle. Then these events are visualized using the markers as
a reference.

Our visualization of splash effect is inspired by surface
splatting and metaball rendering techniques. The organic
shape of metaball is suitable for portraying fluidic effects
such as viscidity of water drops. We also used light atten-
uation and vertex-texture based displacement mapping to
simulate light scattering of deep-water volume, therefore in-
creasing the overall realism.

In our system, the user is required to provide the emitters
for the particles. A state machine is used to describe various
state of a particle, for example if the particle is about to break
into smaller sub-particles. The transition conditions depend
on a set of variables including collision, flowing speed etc.
These variables can be customized by the user to simulate,
for example, different scale of water volume. Te rest of this
paper is organized as follows: Section 2 reviews previous
works; in section 3 we provide an overview of our algorithm,
including how we use the particle system as a reference and
the state transitions of particles; section 4 and 5 details the
implementation of our algorithm; and in section 6 we pro-
vide the results of our work; followed by the conclusion.

2. Previous Work

Much effort was applied in order to capture the complex-
ity of water flow convincingly. Most of the approaches in-
volved certain levels of abstraction and simplification, since
in the strictest sense, a truly accurate simulation model in-
volves interactions between water molecules. This is espe-
cially true in the case of real-time rendering, where fur-
ther simplification is required to reduce the number of cal-
culations to achieve interactive frame-rate. In many cases
developers focuses on one particular type of water behav-
ior in their simulation, such as deep-water [LSJ01], shallow
streams [KW06], waterfalls [RG07] etc.

Even some widely accepted simulation models, such
as the computationally expensive Navier-Stokes Equation
[FM96], simplifies the environment by assuming continuous
incompressible homogeneous fluids, thus not applicable in
very small scales or extreme conditions when the mixtures of
discrete molecules, suspended particles and dissolved gases
are needed to be taken into account. Smooth Particle Hydro-
dynamics (SPH) [MCG03] works by dividing fluid into a set
of discrete particles, and the water surface is reconstructed
from the density field accumulated by said particles. How-
ever SPH has a bottleneck in its neighbor search; since for
each particle, we have to search all its neighbors and com-
pute their interacting force.

The visualization of the simulated fluid, usually done by
surface reconstruction, is also a non-trivial issue. Kipfer et
al. [KW06] propose a real-time algorithm utilizing SPH and
use a carpet-covering method to visualize the surface of a
streaming water-body, with some loss of fine details. All in
all, a simulation structure fully based upon SPH can usually
only utilize a small amount of particles, thus a water-body
limited in scale, if it were to achieve an interactive frame-
rate.

To increase the level of realism without dramatically in-
creasing the number of particles and calculation, a number
of approaches use techniques similar to level-of-detail in
polygonal geometry rendering. Iwasaki et al. [IODN06] uses
off-line point-based rendering and divides primary particles
into sub-particles to simulate the effects of water splash.
Takahashi et al. [TFK∗03] used a state machine to gener-
ate fine details such as splashes and foam. Some aspects of
our work, most importantly the particle state transition and
particle sub-division are inspired by their approach.

With the recent technical progress in graphics hardware,
it is possible to generate and maintain a particle system
with particles numbered in the millions. Lutz Latta [Lat04]
proposed a GPU based massive particle system. Kipfer et
al. [KSW04] used the graphics hardware to sort particles
spatially, thus incorporating inter-particle collision into their
system, creating a large-scale particle flow.

Various developers try to simulate the visual effect of in-
teractions between water and rigid object. Marcelo et al.

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

Figure 2: (Left) Height map. The green shape is the teapot.

This is the height field that we are using for our examples in

Figure 1. (Right) Flow field derived from height field.

[MFC06] presented a column-based and height field ap-
proach to simulate water flow over irregular terrains in GPU.
However, their work did not incorporate the effects of tur-
bulent flows. The recently released Crysis [Sou08], which
uses the in-house developed CryENGINE2, utilizes a num-
ber of special effects to create realistic deep-water (ocean).
The engine renders shoreline using procedural textures and
vertex animated static mesh, to simulate the effect of foam-
ing. Splashing effects, such as bullet penetrating the water
surface, are represented using traditional animated billboard
texture and simple particle system. Splashing do not inter-
fere the basic water structure, which is a screen-space tes-
sellated grid mesh. Using their provided development tool,
a group of users [Hav08] has successfully utilized its parti-
cle system to simulate a particle-based liquid flow, similar
to Uberflow, with streaming and pooling effects. However
the particle system does not possess advanced visual effects
beyond alpha-blending, thus lacking the optical effects one
would have expected in a water simulation.

With the recent release of DirectX 10, Nvidia released a
number of demos to present a wide range of new effects uti-
lizing its GeForce 8 hardware. In particular, the demo ąğCas-
cadesąĺ [RG07] implements a waterfall scene using a GPU
based particle system. It uses the Geometry Shaderąęs vari-
able output to control the spawning and removal of parti-
cles. The water droplets and stream are basically billboards,
aligned to camera and geometry normal respectively. The
water stream (sliding water, as called in the demo) also ren-
ders itself into a 3D texture, to combine with the surface tex-
ture creating a wet rock effect. A number of visual effects
such as mist, sine wave wobbling, and specularity are im-
plemented to improve realism. Our specularity rendering of
water droplets and blending between stages is similar to their
approach.

3. Overview

Our work primarily focuses on visualizing splash and tur-
bulent flow in streaming water, which were not effectively
realized in real-time by previous implementations. We use

a GPU-based particle system to provide a reference of the
visualization. We are using a set of hidden primary parti-
cles to track the river flow, and use a state machine to decide
whether splashes and turbulent flow would occur. If so, these
hidden primary particles will spawn sub-particles to visual-
ize such effects.

To visualize streaming water such as a river, first we need
a representation of the terrain, which serves as the riverbed
and the immediate surroundings. Since the water will even-
tually flow through this terrain, we use a 2D height field to
represent it because we can then employ simple image pro-
cessing algorithms with GPU to acquire certain data, such as
the flow vectors and velocities.

Although we use particle sub-division to more efficiently
simulate the splashing behavior, in some cases these sub-
particles are still too large to realistically represent micro
particles at extreme breakage. A second or further level of
sub-division would be inefficient to implement. Therefore
we employ the technique of particle animation, which is a
set of textures that visually depicts the sequence of particle
breakage.

Thus, in our implementation, three sets of data are re-
quired to be pre-computed procedurally, or specified by user
input.

• The terrain data represented by a height field.
• A set of animation sequence, the transition condition for

navigating this sequence, and the movement behavior of
sub-particles for each particle state.

• The position of the emitters.

We elaborate them in the following sections.

3.1. Height Field and Flow Field

Our terrain data is represented by a 2D height field. We then
use the height field to approximate the 2D flow velocity. This
flow field controls the general direction of the particles. The
flow field is created by first calculating the gradient of the
height field. Then we apply a Gaussian filter on the gradient
map. The reason behind the Gaussian filter is that we would
like to extend the range of the flow around the terrain. Note
that we need to invert the gradient field since the flow direc-
tion is generally the inverse of the gradient. Then we add a
rough velocity into the flow field, which represent the aver-
age river speed and direction. The result is our approximated
flow field:

G = gauss_ f ilter(−∇(height_ f ield))

f low_velocity = G · f low_scale+ rough_velocity

When we include dynamic rigid objects in our calculation,
we only consider the case that the water surface is intersected
between the front and back face of dynamic objects; which
means that the object is neither above nor under water. The
flow field is then approximated from the height field of the

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

front face of the dynamic object. We use a weighted sum to
combine the flow fields of terrain and dynamic objects:

f low f ield f inal = w1 · f low f ieldob jects+w2 · f low f ieldterrain

In addition, we define a threshold φ, which categorize the
current field position as a rapid_ f low or slow_ f low. This
will be used as a variable in our state machine which will be
described in later sections.

i f (| f low_velocity| > φ)

f low_ f ieldstate = rapid_ f low

else

f low_ f ieldstate = slow_ f low

3.2. Particle Motion

Basically, we adopt the Euler integration scheme to update
particles from time t to (t +dt):

v(t +dt) = v(t) · scaleparticle + v f low(p(t)) · scale f low +
F

m
dt

p(t +dt) = p(t)+ v(t +dt) ·dt

where v is the velocity, p is the position, vflow is the 2D
flow field texture computed; scaleparticle and scale f low are
two scalars which can be adjusted by users manually. F
represents the external force such as the gravity. In order
to maintain the simulation efficiency, we do not model the
inter-particle collision here. Collision with obstacles and the
dampening of water velocity are important effects of stream-
ing water. A water droplet has its velocity dampened when
it breaks off from the main water flow, and slowed down by
friction with air. In this work we use an intuitive method to
simulate these phenomena. If the particle collides with the
terrain, the velocity of it will be reflected against the normal
of the terrain or dynamic object. And if the particle pene-
trates a user defined highest depth (a pseudo water surface),
we will damp the particle velocity. To perform the collision
detection, we need the predicted position of the particle:

ppredict = p0 +V0 ·dt

where p0, v0 are the position and the velocity of the particle
in the current frame. Then we have to test if the predicted
position of the particle is inside the terrain, the dynamics
objects or the water body. Assume that the y direction is the
up direction of the world space:

i f (ppredict).y < terrain.height

collide with the terrain

reflect the velocity

elsei f ob ject.bottom_height < (ppredict).y < ob ject.top_height

collide with the dynamic object

reflect the velocity

elsei f terrain.height < (ppredict).y < water.height

collide with water

damp the velocity :

v.y = v.y ·damp_ f actor

All the values that represent the terrain height, the front and
back face of dynamic objects, and the water surface can be
accessed directly from the height field. When a collision oc-
curs, the velocity and the position after collision can be com-
puted as follows:

vre f lect = vt +(−vn) = (v− vn)+(−vn)

= v− 2vn

where n is the normal of the collision position and can be
computed from the height field texture of the terrain and the
dynamic objects.

3.3. State Transition

From the last section, we can determine the collision condi-
tion of each particle. A collision condition is asserted when
the particle collides with the terrain, with a dynamic object,
or penetrates the pseudo water surface. In addition, we have
the flow field condition (rapid or slow). We use these two
variables to decide how the particleąęs state changes.

The state transition serves two roles. It navigates the pre-
defined animation sequence, which visually describe the
lifecycle of a particle. In addition is plays an important role
for generating sub-particles. The transition condition can be
customized by the user to incorporate a larger range of ani-
mation choice, or suppress/encourage certain effects such as
foaming.

4. Implemention

Our simulation in a single time step can be divided into the
following phases, the underlying concepts of which are de-
scribed in the last section.

• Render the terrain and the rigid bodies into the height field
• 2D flow field approximation
• Emit particles and sub-particles
• Particle motion simulation
• Collision and dampening
• State transition
• Transfer the position texture to vertices

In this section, we briefly explain several implementation de-
tails for our GPU based particle simulation.

4.1. References

In our implementation, we need to allocate the attribute tex-
tures for the height field, flow field, position texture, velocity,
current state, and state transition.

If the user provides a geometry of the riverbed terrain in-
stead of a 2D height field texture, we can render the height
field texture by setting a camera perpendicular to the terrain.
We also use this camera to render the dynamic object, which

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

is clipped against the pseudo water surface (so that only the
parts that intersects with the water surface is accounted for).
In our implementation, we store the height field of the terrain
in the R channel of a height texture, and use the G channel
to store the dynamic object. The creation of the flow field is
described in section 3.1, and we store it in a separate texture.

The positions, velocities and states of all active particles
are stored in 2D floating-point textures. Each pixel of these
textures records the attributes of one particle. Since we can-
not read and write the attribute textures in a single cycle
under current rendering pipeline, we need to use double-
buffering.

The state texture stores the state, age, lifespan and size of
each particle in the RGBA channels respectively. The state
is closely related to the transition texture. We perform a tex-
ture lookup in the transition texture to determine if a state
transition occurs. The age and lifespan will be used to de-
cide if a particle is alive at the current iteration. The size of
the particle determines its visual proportion.

The transition texture is essentially a descriptor of our
finite state machine. In our implementation we use a 1D
floating-point texture. And for the sake of simplicity, only
one transition leads out from each state. Each entry records
the transition condition, which consists of transition switch
(if this state is enabled), collision condition, flow field state,
and the transition target state. These values will be stored in
the RGBA channels of the texture.

In our implementation, we need to read back the state tex-
ture from GPU to CPU when some primary particles are
spawning sub-particles, under the NV_vertex_program3 ex-
tension in OpenGL (or Shader Model 3.0 in DirectX). We
will describe the method of emitting sub-particles in the fol-
lowing subsection.

4.2. Particles and Sub-Particles Emission

Particles are allocated or removed as the simulation goes on.
Unfortunately, since allocation problems are serial by nature,
they cannot be handled efficiently on the GPU. We still need
to utilize the CPU in order to allocate new particles in the
simulation. A simple solution is to store available indices
in a stack. Once the index of a particle is determined, the
particle attribute will be updated into the attribute textures.

The death of a particle is decided by its birth time and
lifespan. To collect the dead particles efficiently, we use a
priority queue that is sorted by the particleąęs death time on
the CPU side. If the current time is larger than the supposed
time of death of a particle, its index will be freed and pushed
to the indices stack.

Under the NV_vertex_program3 extension, it is difficult
to divide particles into smaller sub-particles entirely using
GPU. We would need to allocate sub-particles in CPU and
pass their attributes to the GPU. To generate sub-particles,

we first record the initial attributes of sub-particles for each
particle state into a linked-list. The initial attributes can be
precomputed or specified by users. By reading back the
state texture of particles from GPU to CPU, we can de-
termine which particles will spawn sub-particles. Then the
sub-particles recorded in the linked-list will be emitted by
the CPU. Ultimately, these sub-particles are recorded to the
same attribute textures describing the primary particles.

In our implementation, we treat the splash emitter as a
kind of particle. When a splash emitter collides with objects,
the splash emitter will emit sub-particles, which we would
call splash particles.

4.3. Transfer the Position Data to Vertices

In our implementation, we use vertex texture fetch (VTF)
to transfer the position texture data into vertex data using
graphics hardware. We can cache the vertex data in graph-
ics hardware in advance, and then use VTF to translate these
cached vertices to their respective positions. The particles
can be rendered as point sprites, billboards, or reconstructed
as a polygonal mesh by Marching cube etc. In our imple-
mentation we choose to render the particles as billboards,
therefore we would cache four vertices per particle. Since
the particle size is recorded in the state texture, we can de-
termine the size of the billboard dynamically with VTF.

5. Rendering

In the visualization stage, we first construct the billboards
of particles in GPU then render them with a number of post-
processing techniques. In our hybrid approach, we use a grid
mesh to represent the water surface. The particles and water
surfaces are then combined into the final result of our ren-
dering.

We choose to use billboards to represent our metaball ef-
fect, since it is computationally less costly than reconstruct-
ing the entire splash surface. While there are works that sig-
nificantly reduces the cost of full polygonal iso-surface re-
construction [RB08], our implementation needs to visualize
a significantly higher amount of particles. A fully polygonal
approach is also unnecessary since we focus our work on vi-
sualizing splashes, where individual particles often occupies
no more than a few pixels. To use polygons to reconstruct a
discernable spherical surface would be impractical.

5.1. Billboard Construction

There are two types of billboards in our implementation.
One of them aligns towards the camera so they always face
the user, the other aligned parallelly to the water flow. Since
the splashing droplets will eventually fall back into the wa-
ter, we first render the splash texture on a camera-aligned
billboard. Then for each iteration, we turn the billboard grad-
ually until it is parallel to the water surface. The billboards

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

parallel to the water surface represents the turbulent wake of
the water stream.

5.2. Splash Rendering

There are several optical effects that are necessary when we
create the look of water, such as reflection, refraction and
Fresnel. Both reflection and Fresnel are related to the in-
cident viewing angle and normal vector of the water sur-
face, and refraction is related to the depth of the water body.
Therefore our implementation will concentrate on acquiring
the normal vector and depth information from our particle
data. In our method, all particles needed to be traversed and
rendered once into a rendering target. Then we use a set of
pixel shaders operating upon this texture to create the effect
we need.

Our first step is to render all particles using view-aligned
billboards. The billboard texture is a spherical gradient tex-
ture representing a water drop. The billboards are rendered
into different layers based on their Z value. For the ease of
our experiments, we use the RGB channel of a single texture
as the three separate layers. The particles do not need to be
sorted since we are simply using alpha blending to accumu-
late the depth. These layers represent the depth of the water
body. Then we use a pixel shader to perform Gaussian blur
on the layers. While the billboards are gradient textures, we
need to filter the resulting image to eliminate the blending
artifact in order to create the metaball effect.

On the next step we create two maps: the normal map and
a metaball ąğmaskąĺ. The normal map is created by applying
linear gradient function on the filtered depth layers, with the
sum of all layers representing the total depth on a pixel.

The metaball mask is created by applying a threshold
function on the filtered depth layers. This threshold repre-
sents the boundary of the water body. We use a threshold of
0.5 in our experiments. The metaball mask and the filtered
depth layers represent the surface shape of the water splash.
The filtering of the depth layers also eliminated traditional
clipping artifacts present in billboard rendering. Since the
metaball mask is obtained from the filtered layers, such arti-
facts are no longer visible in the final result.

Next, we use the normal map, filtered depth layers and
metaball mask to create the necessary optical effects. In
our experiments, we implemented screen-based refraction
effect and specular lighting. The screen-based refraction is
not physically accurate, since it is the rendered background
being distorted using the normal vector. However it serves
its purpose well in our application. We use the Blinn-Phong
model to compute the specular highlight of splash surfaces.

To visualize the volume color of the splash, such as
whitening due to microscopic bubbles being formed within,
and mist created by tiny droplets; we simply use the filtered
depth map as the volume color. The composition of specular

highlight and volume color would then be the final result of
the visualization of water splashes and turbulence.

5.3. River Surface Rendering

As we have stated that it is impractical and inefficient to ren-
der the entire water body using particles, we use a more tra-
ditional approach to render the water surface using a grid
mesh.

The grid mesh is distorted using a normal map, which rep-
resents a generalized rippling water surface. We can animate
this normal map using procedural wave functions [Kry05],
or simply shifting the texture coordinates continuously to
create an illusion of flowing water. With the normal map, we
can easily create optical effects such as refraction, reflection
and Fresnel.

When the light transmits within translucent volume, the
energy of the light will be gradually absorbed by the partici-
pating media. According to Beerąęs Law, the approximation
of the light attenuation in homogenous liquid is:

T = 10c′l

Where c is the multiplication of the concentration of the liq-
uid and its absorption constant, and l is the length of the
light path. We use the water depth as l in our implementa-
tion. When the water flow collides with obstacles, a splash
is generated and bubbles will form underwater. We illustrate
this effect by first blurring the filtered depth map, and then
use a noise texture to distort it. We render this texture masked
by the water surface grid mesh, to create the illusion that this
is an underwater phenomenon.

Since the surface grid mesh is flat and the normal map
cannot represent a very wide range of variation of the water
surface, the particles with certain states are used to displace
the grid mesh vertices. We render these particles as point
sprites into a displacement texture with a camera orthogonal
to the terrain. Then using vertex shader, the y component of
the grid mesh vertex will be displaced by VTF.

The final visualization is the composition of resulting im-
ages from 5.2 and 5.3. First, we render the z-value of the
terrain into the z-buffer, and then render the splashes into a
screen texture with z-test on. Finally we use alpha blending
to blend the splashes and other objects in screen space.

6. Results and Conclusion

All the experiments shown here ran on an Intel Pentium D
at 2.8GHz processor and 1GB of memory, and an NVIDIA
GeForce 7900GS graphics card with 256MB of memory.
OpenGL and NVIDIA Cg shading language were used for
all graphics operations. The attribute textures for recording
the particles had the size of 128ąÑ128, and the viewport res-
olution was set to 512ąÑ512 pixels. In our demo, the frame

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

rates can achieve 120 frames per second. We update parti-
cles and sub-particles in the same pixel shader, and use the
position texture to translate the cached vertices to appropri-
ate locations by VTF method. Nevertheless, the method that
generates particles and sub-particles simultaneously may use
up the texture storage very quickly, even if we only spawn
sub-particles once. But this problem will be solved soon in
the GeForce 8 series with the geometry shader power. On the
other hand, the 2D metaball surface reconstruction is very
efficient.

We used a number of testing sets in our experiments, to
demonstrate how the splash and the turbulent wake of the
water stream are influenced by the terrain features of the
riverbed, and their interaction with dynamic rigid objects.
Our system shows that realistic visualization of recognizable
effects of a river stream is possible with minimum input from
the artist.

References

[CLCC07] CHANG J.-W., LEI S. I. E., CHANG C.-F.,
CHENG Y.-J.: Real-time rendering of splashing stream
water. In IIH-MSP ’07: Proceedings of the Third Inter-

national Conference on International Information Hid-

ing and Multimedia Signal Processing (IIH-MSP 2007)

(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 337–340.

[FM96] FOSTER N., METAXAS D.: Realistic animation
of liquids. Graph. Models Image Process. 58, 5 (1996),
471–483.

[Hav08] Realtime water physics by havoksage.
http://www.crymod.com/thread.php?threadid=14945

(2008).

[IODN06] IWASAKI K., ONO K., DOBASHI Y., NISHITA

T.: Point-based rendering of water surfaces with splashes
simulated by particle-based simulation. CDROM of Proc.

Nicograph International (June 2006).

[Kry05] KRYACHKO Y.: Using Vertex Texture Displace-

ment for Realistic Water Rendering. Addison-Wesley,
2005.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a gpu-based particle engine. In HWWS ’04:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware (New York, NY, USA,
2004), ACM, pp. 115–122.

[KW06] KIPFER P., WESTERMANN R.: Realistic and in-
teractive simulation of rivers. In GI ’06: Proceedings of

Graphics Interface 2006 (Toronto, Ont., Canada, Canada,
2006), Canadian Information Processing Society, pp. 41–
48.

[Lat04] LATTA L.: Building a million-particle system. Ar-

ticle of Gamasutra (July 2004).

[LSJ01] LASSE STAFF JENSEN R. G.: Deep-water anima-
tion and rendering. Article of Gamasutra (Sept. 2001).

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.:
Particle-based fluid simulation for interactive applica-
tions. In SCA ’03: Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer anima-

tion (Aire-la-Ville, Switzerland, Switzerland, 2003), Eu-
rographics Association, pp. 154–159.

[MFC06] MAES M. M., FUJIMOTO T., CHIBA N.: Ef-
ficient animation of water flow on irregular terrains. In
GRAPHITE ’06: Proceedings of the 4th international

conference on Computer graphics and interactive tech-

niques in Australasia and Southeast Asia (New York, NY,
USA, 2006), ACM, pp. 107–115.

[RB08] ROSENBERG I. D., BIRDWELL K.: Real-time
particle isosurface extraction. In SI3D ’08: Proceedings

of the 2008 symposium on Interactive 3D graphics and

games (New York, NY, USA, 2008), ACM, pp. 35–43.

[RG07] RYAN GEISS M. T.: Nvidia demo team secrets -
cascades. Presentation on Game Developers Conference

2007 (2007).

[Sou08] SOUSA T.: Crysis next gen effects. Presentation

on Game Developers Conference 2008 (2008).

[TFK∗03] TAKAHASHI T., FUJII H., KUNIMATSU A.,
HIWADA K., SAITO T., TANAKA K., UEKI H.: Real-
istic animation of fluid with splash and foam. Comput.

Graph. Forum 22, 3 (2003), 391–400.

c© 2008 The Author(s)

D. Fellner & S. Behnke / Pacific Graphics Poster Proceedings

Figure 3: Various examples of our algorithm. Only the terrain is different between these cases, and the water stream fea-

tured different characteristics with no additional input required. Top-left:Water stream with a jagged riverbed. Top-right:This

riverbed features an S shape rock formation underwater. This example shows how underwater terrain feature influences the

surface wake. Bottom-left:A relatively smooth riverbed, with a pyramid-shaped obstacle. Bottom-right: Details of the splash

and foam. Notice that there is no clipping artifact.

c© 2008 The Author(s)

