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Phase 2: Lower Tail Probability

« Gaussian Copula It’s joint default probability is
defined by

Numerical Results

Gaussian Tail Probability Estimation
EIS vs. Matlab code-mvncdf.m

Importance Sampling by High-Dimensional Embedding

Theorem: FORM 1IS as Embedding IS

Let X be a standard multivariate normal defined on
(2, F, P) and Q* denotes the inf-argument of prob-
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Common problem: How to efficiently compute
P(g(X) <¢) =E{I(g(X) <)},
where X ~ N(0,%) and ¢ € R.

Methodology: High-Dimensional
Embedding IS

A new procedure with three phases:

P1. embeds the evaluation problem into a high-
dimensional space.

P2. estimates lower tail probabilities by efficient im-
portance samplings.

P3. projects those associated probability measures with
some marginal condition.

This procedure leads to an entropy minimization
problem with constraints, well studied in the field
of machine learning.
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Figure 3: Three phases of high-dimensional embedding IS
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Asymptotic Zero Variance: (Gaussian
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_E {1[ (X < aC) exp (—\/50TZ‘1X + %CTZ‘lC) }

where X ~ N (y/aC,Y) under P. P, (a) denotes the
second moment of the IS estimator with scale a.

Theorem

Efficient (Asymptotically Optimal) Importance Sam-
pling by Large Deviation
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Embedding 1IS: Constrained Relative
Entropy Minimization Problem

H(P|P) st. Ep[X] € D], (1)

where Q:Q < P}, H(- | -) denotes the rel-
ative entropy (Kullback-Leibler divergence), and D =

{C’ e R": g(C) = c}.
Variational analysis by Altun and Smola [1] and Koyejo
and Ghosh [4].
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eraged CPU time: 1.47E-01(s), 1.50E-01 (s), 1.75E-01 (s), not including dimensions beyond
25.

Table 1: Result of Monte Carlo Simulation under multivariate normal
distribution (sample size = 2M, d=40.)[3]

GPU CPU | Speed up
BMC Mean 1.50e-6 | 1.50e-6
SE 8.7e-7 | 8.7e-7

Time 0.05 (s) | 1.77 (s) X36
EIS Mean 2.00e-6 | 2.01e-6
SE 1.40e-8 | 1.39e-8
Time 0.10 (s) | 1.77 (s) X18
Accuracy | Variance Re- | X3861 | X3918
duction Ratio
BMC stands for the basic Monte Carlo method. EIS stands for efficient importance
sampling.

Total Reduction in time and variance:

(GPU+EIS) / (CPU+BMC) =~ 68000 faster!

Application I: Risk Management.
FORM IS

= used for structural reliability in engineering.

= Value-at-Risk estimation, US patterned by De and
Tamarchenkol2].

= In the next theorem, we prove that FORM IS is a
special case of our proposed embedding IS.
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Contribution and Impact

= A new class of IS algorithms is proposed. Advantages
are (1) scalability, (2) asymptotic optimality, (3) GPU
parallel computing.

« FORM (Design point) IS, a US patterned method for
VaR estimation, is a special case of embedding IS.

= Background theory links deeply to machine learning.
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