PS3 programming basics

Week 1. SIMD programming on PPE

Materials are adapted from the
textbook

Overview of the Cell Architecture

SPE
(Synergistic SPE SPE SPE
Processor
Element)
A A A A
Y Y
o =3 f\éemory Interface [«—>» XIO
ontroller (MIC) |€«—>» Channels
(PowerPC | Element Interconnect Bus (EIB)
Processor Broadband Engine |[«—> FlexlO
Element) :] “| Interface (BEl) |«—> Channels

XIO: Rambus Extreme Data Rate (XDR) I/0 (XIO)
memory channels

The PowerPC Processor Element

PPU

* Set of 64-bit registers
e 32 128-bit registers

e A32-KB L1 I-cache

* A32-KB L1 D-cache

 Two simultaneous
threads of execution
and can be viewed as a
2-way multiprocessor
with shared dataflow.

PPSS

A unified 512-KB L2 I1+D cache
Various queues
A bus interface unit

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor Storage Subsystem (PPSS)

L2 Cache

Synergistic Processor Elements

SPU

128 registers (each one
128 bits wide),

256-KB local store

has its own program
counter and is
optimized to run SPE
threads spawned by
the PPE

MFC

e DMA transfers to move
instructions and data between
the SPU’s LS and main storage.

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

Local Store (LS)

Memory Flow Controller (MFC)

DMA Controller

Flement Interconnect Bus

ﬁ'ﬁ'ﬂﬁﬁ

H%Q

B —

DRD
Interface

)
e
g:-!

2:

Threads and tasks

PPE thread A Linux thread running on a PPE.

SPE thread A Linux thread running on an SPE.
Each such thread has its own SPE context which
includes the 128 x 128-bit register file, program
counter, and MFC Command Queues, and can
communicate with other execution units (or with
effective-address memory through the MFC
channel interface).

Cell A task running on the PPE and SPE.
Broadband Each such task has one or more Linux threads. All
Engine task the threads within the task share task’s resources.

Vector/SIMD Extension unit

* The 128-bit Vector/SIMD Multimedia Extension unit (VXU)
operates concurrently with the PPU’s fixed-point integer unit
(FXU) and floating-point execution unit (FPU).

Instructions

FXU ‘ ‘ FPU ‘ ‘ VXU ‘

Memory

PPU SIMD PROGRAMMING BASICS

Vector instrinsic functions

e Specific: have a 1-1 mapping with a single
assembly-language instruction
— EX: vec_abs(a)

* Generic: map to one or more assembly-language
instructions
— EX: vec_or(a,b),

* Predicates: compare values and return an integer
that may be used directly for branching

— EX: vec_all_eq(a,b), vec_any eq(a,b)

Vector data types

The vector registers are 128 bits and can contain

e Sixteen 8-bit values, sighed or unsigned
— EX: vector unsigned char

* Eight 16-bit values, signed or unsigned
— EX: vector unsigned short

* Four 32-bit values, signed or unsigned
— EX: vector unsigned int

* Four single-precision IEEE-754 floating-point
— EX: vector float

Big-endian byte and bit ordering

MSB LSB
0 1 2 3 4 5 8 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 284 29 30 31

Byte 0 Byte 1 Byte 2 Byte 3

Bit and Byte Order for a 32-bit Word

MSE LSB
0 1 2 3 4 5 6 7 8 08 1011 1213 14 15 /\ 120 127
\
i

Byte 0 Byte 1 Byte 15

Bit and Byte Order for a 128-bit Register

A general approach to get data

e “typedefs” a union of an array of four ints and
a vector of signed ints.

#include <stdio.h>

typedef union {

int iVals[4];

vector signed int myVec;
} vecVar;

How to use it?

int main() {
vecVar vl, v2, vConst; // define variables

// load the literal value 2 into the 4 positions in vConst,
vConst.myVec = (vector signed int){2, 2, 2, 2};

// load 4 values into the 4 element of vector vl

vl.myVec = (vector signed int){10, 20, 30, 40};

// call vector add function

v2.myVec = vec_add(vl.myVec, vConst.myVec);

// see what we got!

printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3]
= %d\n\n", v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]);
return O;

__attribute_ (alligned(...))

* Variables are aligned at a boundary
corresponding to its datatype size

— The datatype size of vector is 16 (bytes)
 When declaring a variable, you can assign its

alignment by _ attribute (aligned(...))

— EX:intvar ___ attribute (aligned(8))

— A valid address will be like OXOFFFFFF8 or
OxOFFFFFFO

Vector Add Operations

vector signed int VA,VB,VC;
VC = vec_add(VA,VB);

add VC,VA,VB

VA

A2

B.2

VvVC

H

Example 1: array-summing
* Traditional approach

// 16 iterations of a loop

int rolled _sum(unsigned char bytes[16]) {
inti; int sum =0;
for (i=0; i< 16; ++i) { sum += bytes][i]; }
return sum;

}

Vector Version (no loop)

// Vectorized for Vector/SIMD Multimedia Extension
int vectorized _sum(unsigned char data[16]) {
vector unsigned char temp;
union { int i[4]; vector signed int v; } sum;
vector unsigned int zero = (vector unsigned int){0};
// Perform a misaligned vector load of the 16 bytes.
temp = vec_perm(vec_Id(0, data), vec_|d(16, data),
vec_lvsl(0, data));
// Sum the 16 bytes of the vector
sum.v = vec_sums((vector signed int)vec_sum4s(temp, zero),
(vector signed int)zero);
// Extract the sum and return the result.
return (sum.i[3]);

Function Description

Functions ______|Explanation

d = vec_perm(a,b,c) Vector Permute

d = vec_ld(a,b) Vector Load Indexed

d = vec_lvsl(a,b) Vector Load for Shift Left
d = vec_sums(a,b) Vector Sum Saturated

d = vec_sumds(a,b) Vector Sum Across Partial

(1/4) Saturated

d = vec |ld(a,b)

* Load 16 bytes from memory and return to d

e a(aninteger)is added to the address of b (a
pointer), and the sum is truncated to a
multiple of 16 bytes. The result is the contents
of the 16 bytes of memory starting at this
address.

— If the address is not alighed on a 16 bytes
ooundary, d is loaded from the next-lowest 16

oyte boundary

Example

 d=vec |d(O, data);

4 56 7 89 1011 121314 1516 1718 19
data

0O 1 23 4 56 7 89 1011 121314 15

d
* d=vec_ld(16, data);

4 5 6 7 8 9 1011 121314 1516 1718 19

data

16 1718 1920 212223 24 25262728 2930 31

d = vec_lvsl(a,b)

* Does not perform any loading at all!!!

* Can be use to determine whether the pointer
is alignhed relative to the 16 byte vector
boundary.

— d = vec_lvsl(4,data)

4 5 6 7 8 9 1011 121314 1516 1718 19

data

d = vec_perm(a,b,c)

* Think [a,b] is a 32 byte long vector. The
indices of the bytes in b is from 16 to 31.

* cisanindex array.

vC |01 |14 |18 |10 | 06 | 15| 19 [1A|1C |1C | 1C | 13 | 08 | 1D | 1B | OE

VA

B

Vv

L 4 w w Y w Y

vec_sums, vec_suma?2s, vec_sumd4s

e sum =vec_sums(l1,12) ¢ sum =vec_sum2s(I1,12)
11
12

sum

e sum =vec_sumd4s(l1,12)
11
12

sum

Example 2: stremp

* int strcmp(const char* strl, const char* str2);

— Returns + if str1>str2, O if strl==str2, and - if
strl<str2

int strcmp (const char * strl, const char * str2){
int sizel = strlen(strl); int size2 = strlen(str2);
int N = min(sizel,size2);
for (inti=0; i<N; i++){
if (stri[i]>str2[i]) return 1;
else if (stri[i]<str2[i]) return -1;
}
if (sizel==size2) return O;
if(sizel>size2) return 1; return -1;

)

Vector Version

e Let’s assume that both strl and str2 are
aligned at 16 boundaries.
e Basic idea:
— (1) Check the equality of two vectors
— (2) If not, then check element by element.
 Use vec all eq for (1)

—vec_all_eq(a,b) returns 1 if all the element of a
and b are equal. Otherwise, it returns O

Example3: Insertion Sort

e EX:sort an array num[] in ascending order
— Insert num(i) to the sorted list num(1:i-1)

for (1i=1; 1<N; i++)
for(j=i;3>0;3j--)
if (num(j-1)>num(j))
swap (num(j-1) ,num(7j)) ;

else break;

Vector Version

* Replace scalar variable num (i) by a vector
* How to perform the swap function?
tmp=num(j-1);num(j)=num(j-1);num(j)=tmp;
— Use vec_|d and vec_st
— EX: vec Id(vec,j*16, num); vec st(vec,j*16, num)
— What if num is not aligned on a 16 byte boundary?
* How about the comparison?
— Can vec_all gt work?

Two stages

1. Order the vectors, such that all larger
elements in one vector and all smaller
elements in another. (Inter-vector sorting)

25 23 21 16 25 21 23 21

— EX:turn into
20 15 21 18 20 15 18 16

— What is the sequential code to do that?

2. Order the elements inside the individual
vectors. (Intra-vector sorting)

Inter-vector Sort

* Two functions: vec_min and vec_max

— Returns a vector containing min(or max) elements
in each position

— EX: vec_max({25,23,21,16}{20,15,21,18})
={25,23,21,18}

— EX: vec_min({25,23,21,16}{20,15,21,18})
={20,15,21,16}

* Almost is what we need, except...

Rotate a Vector

25 23 21 16 RESRLL)

20 15 21 18 Vec_min

25 23 21 18 RESRIL)

ec_min

E

25 23 21 20 RSl

E

25 23 21 20 RESEUL)

LD

* We can use
vec_perm to
rotate a vector

* The index
vector is
{4,5,6,7,8,9,10,
11,12,13,14,15,
0,1,2,3}

Intra-vector Sort

* Rely on four functions

— d =vec_cmpgt(a,b): compares elements of a and b,
if a[i]>=bli], d[i]=F2. Otherwise, d[i]=0,for i=0,1,2,3.
— d =vec_and(a,b): d[i] = a[i]&b[i]
* bit level AND
— d =vec _and(a,b): d[i] = a[i]+b[i]
— d =vec perm(a,b,c): we had learned it.

e How to do that?
— For example, sort {12,7,-5,9}

Some Analysis

How many comparisons do we need?

- (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)

Which can be compared (sorted) in parallel?

— For example: {(0,1), (2,3)}, {(0,2), (1,3)},{(0,3), (1,2)}
What can we get if {(0,1), (2,3)} is sorted first?
— We get A[0] < A[1] and A[2]<A[3]. What's next?
What can we get after {(0,2), (1,3)} is sorted?

— A[O]<A[1], A[2]<A[3] (why?) A[0]<A[2],A[1]<A[3].
What do we miss?

Sorting Network

Step 1: {(0,1)(2,3)}

Step 2:{(0,2)(1,3)} I I

I

w N - O

T
Step 3:{(1,2)} I |
Exercise: what’s the sorting network if we
sort {(0,3), (1,2)} first? And {(0,2), (1,3)} first?
How to make comparison of {...}?

— Need to compare elements using vec_cmpgt
— Need to exchange data according to the result

EX: Compare {(0,1),(2,3)}

b=vec_perm(a,a,{4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11});
//b[0]=a[1], b[1]=a[0], b[2]=a[3], b[3]=a[2]

d = vec_cmpgt(a,b)
// For a={12,7,-5,9}, b={7,12,9,-5} =»d={F%,0,0,F3}

e Exercise: what is the index array if we want to
compare {(0,2),(1,3)} or {(1,2)}?
— For{(0,2),(1,3)}, {8,9,10,11,0,1,2,3,12,13,14,15,4,5,6,7}
— For{(1,2)}, {0,1,2,3,8,9,10,11,4,5,6,7,12,13,14,15}

Vector Comparison Functions

* We need to exchange data if d[0]=F2 or d[2]=F8

* The only way to exchange data is by vec_perm.

— How to design the index array c?
* |If d=={0,F8,0,F8}, c={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
* |If d=={F%,0,0,F8}, c={4,5,6,7,0,1,2,3,8,9,10,11,12,13,14,15}
e |If d=={0,F3,F3,0}, c={0,1,2,3,4,5,6,7,12,13,14,15,8,9,10,11}
e |f d=={F%,0,F8,0}, c={4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11}
— One possible way to generate ¢ = base+mask
* base can be {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}
* mask can be and(d,{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4})

Exercises

 How to design the index array for {(0,2)(1,3)}?

— base={0,1,2,3,5,6,7,8, 0,1,2,3,5,6,7,8}

— mask={8, 8, 8,8,8,8,8,8,8,8,8,8, 8,8, 8, 8}
 How to design the index array for {(0,3)(1,2)}?

— base={0,1,2,3,5,6,7,8, 5,6,7,8,0,1,2,3}

— mask={12,12,12,12,4,4,4,4,4,4,4,4,12,12,12,12}
 How to design the index array for {(1,2)}?

— base={0,1,2,3,5,6,7,8, 5,6,7,8,12,13,14,15}

— mask={0,0,0,0, 4,4,4,4,4,4,4,4,0,0,0,0}

Homework

* Read textbook chap 9.

* Implement "quick sort" or "merge sort"
— Implement the sequential code
— Use vectorized statements.

— Compare the performance for different
implementations and to the insertion sort in the
textbook

