
PS3 programming basics

Week 1. SIMD programming on PPE

Materials are adapted from the
textbook

Overview of the Cell Architecture

XIO: Rambus Extreme Data Rate (XDR) I/O (XIO)
memory channels

The PowerPC Processor Element

PPU

• Set of 64-bit registers

• 32 128-bit registers

• A 32-KB L1 I-cache

• A 32-KB L1 D-cache

• Two simultaneous
threads of execution
and can be viewed as a
2-way multiprocessor
with shared dataflow.

PPSS

• A unified 512-KB L2 I+D cache

• Various queues

• A bus interface unit

Synergistic Processor Elements

SPU

• 128 registers (each one
128 bits wide),

• 256-KB local store

• has its own program
counter and is
optimized to run SPE
threads spawned by
the PPE

MFC

• DMA transfers to move
instructions and data between
the SPU’s LS and main storage.

Element Interconnect Bus

Threads and tasks

Term Definition

PPE thread A Linux thread running on a PPE.

SPE thread A Linux thread running on an SPE.
Each such thread has its own SPE context which
includes the 128 x 128-bit register file, program
counter, and MFC Command Queues, and can
communicate with other execution units (or with
effective-address memory through the MFC
channel interface).

Cell
Broadband
Engine task

A task running on the PPE and SPE.
Each such task has one or more Linux threads. All
the threads within the task share task’s resources.

Vector/SIMD Extension unit

• The 128-bit Vector/SIMD Multimedia Extension unit (VXU)
operates concurrently with the PPU’s fixed-point integer unit
(FXU) and floating-point execution unit (FPU).

PPU SIMD PROGRAMMING BASICS

Vector instrinsic functions

• Specific: have a 1-1 mapping with a single
assembly-language instruction

– EX: vec_abs(a)

• Generic: map to one or more assembly-language
instructions

– EX: vec_or(a,b),

• Predicates: compare values and return an integer
that may be used directly for branching

– EX: vec_all_eq(a,b), vec_any_eq(a,b)

Vector data types

The vector registers are 128 bits and can contain

• Sixteen 8-bit values, signed or unsigned
– EX: vector unsigned char

• Eight 16-bit values, signed or unsigned
– EX: vector unsigned short

• Four 32-bit values, signed or unsigned
– EX: vector unsigned int

• Four single-precision IEEE-754 floating-point
– EX: vector float

Big-endian byte and bit ordering

A general approach to get data

#include <stdio.h>
// Define a type that can be an array of ints or a vector.
typedef union {

int iVals[4];
vector signed int myVec;

} vecVar;

• “typedefs” a union of an array of four ints and
a vector of signed ints.

How to use it?

int main() {
vecVar v1, v2, vConst; // define variables

// load the literal value 2 into the 4 positions in vConst,
vConst.myVec = (vector signed int){2, 2, 2, 2};
// load 4 values into the 4 element of vector v1
v1.myVec = (vector signed int){10, 20, 30, 40};
// call vector add function
v2.myVec = vec_add(v1.myVec, vConst.myVec);
// see what we got!
printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3]
= %d\n\n", v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]);
return 0;

}

__attribute__(alligned(…))

• Variables are aligned at a boundary
corresponding to its datatype size

– The datatype size of vector is 16 (bytes)

• When declaring a variable, you can assign its
alignment by __attribute__(aligned(…))

– EX: int var ___attribute__(aligned(8))

– A valid address will be like 0x0FFFFFF8 or
0x0FFFFFF0

Vector Add Operations

vector signed int VA,VB,VC;

VC = vec_add(VA,VB);

Example 1: array-summing

// 16 iterations of a loop
int rolled_sum(unsigned char bytes[16]) {

int i; int sum = 0;
for (i = 0; i < 16; ++i) { sum += bytes[i]; }
return sum;

}

• Traditional approach

Vector Version (no loop)

// Vectorized for Vector/SIMD Multimedia Extension
int vectorized_sum(unsigned char data[16]) {

vector unsigned char temp;
union { int i[4]; vector signed int v; } sum;
vector unsigned int zero = (vector unsigned int){0};
// Perform a misaligned vector load of the 16 bytes.
temp = vec_perm(vec_ld(0, data), vec_ld(16, data),

vec_lvsl(0, data));
// Sum the 16 bytes of the vector
sum.v = vec_sums((vector signed int)vec_sum4s(temp, zero),
(vector signed int)zero);
// Extract the sum and return the result.
return (sum.i[3]);

}

Function Description

Functions Explanation

d = vec_perm(a,b,c) Vector Permute

d = vec_ld(a,b) Vector Load Indexed

d = vec_lvsl(a,b) Vector Load for Shift Left

d = vec_sums(a,b) Vector Sum Saturated

d = vec_sum4s(a,b) Vector Sum Across Partial
(1/4) Saturated

d = vec_ld(a,b)

• Load 16 bytes from memory and return to d

• a (an integer) is added to the address of b (a
pointer), and the sum is truncated to a
multiple of 16 bytes. The result is the contents
of the 16 bytes of memory starting at this
address.

– If the address is not aligned on a 16 bytes
boundary, d is loaded from the next-lowest 16
byte boundary

Example

• d = vec_ld(0, data);

• d = vec_ld(16, data);

data
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

d
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

d
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

d = vec_lvsl(a,b)

• Does not perform any loading at all!!!

• Can be use to determine whether the pointer
is aligned relative to the 16 byte vector
boundary.

– d = vec_lvsl(4,data)

data
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

d 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

d = vec_perm(a,b,c)

• Think [a,b] is a 32 byte long vector. The
indices of the bytes in b is from 16 to 31.

• c is an index array.

vec_sums, vec_sum2s, vec_sum4s

• sum = vec_sums(I1,I2) • sum = vec_sum2s(I1,I2)

I1

I2

sum

I1

I2

sum

• sum = vec_sum4s(I1,I2)

I1

I2

sum

Example 2: strcmp

• int strcmp(const char* str1, const char* str2);

– Returns + if str1>str2, 0 if str1==str2, and - if
str1<str2
int strcmp (const char * str1, const char * str2){

int size1 = strlen(str1); int size2 = strlen(str2);
int N = min(size1,size2);
for (int i =0; i<N; i++){

if (str1[i]>str2[i]) return 1;
else if (str1[i]<str2[i]) return -1;

}
if (size1==size2) return 0;
if(size1>size2) return 1; return -1;

}

Vector Version

• Let’s assume that both str1 and str2 are
aligned at 16 boundaries.

• Basic idea:

– (1) Check the equality of two vectors

– (2) If not, then check element by element.

• Use vec_all_eq for (1)

– vec_all_eq(a,b) returns 1 if all the element of a
and b are equal. Otherwise, it returns 0

Example3: Insertion Sort

• EX: sort an array num[] in ascending order

– Insert num(i) to the sorted list num(1:i-1)

for(i=1; i<N; i++)

for(j=i;j>0;j--)

if(num(j-1)>num(j))

swap(num(j-1),num(j));

else break;

Vector Version

• Replace scalar variable num(i) by a vector

• How to perform the swap function?
tmp=num(j-1);num(j)=num(j-1);num(j)=tmp;

– Use vec_ld and vec_st

– EX: vec_ld(vec,j*16, num); vec_st(vec,j*16, num)

– What if num is not aligned on a 16 byte boundary?

• How about the comparison?

– Can vec_all_gt work?

Two stages

1. Order the vectors, such that all larger
elements in one vector and all smaller
elements in another. (Inter-vector sorting)

– EX: turn into

– What is the sequential code to do that?

2. Order the elements inside the individual
vectors. (Intra-vector sorting)

25 23 21 16

20 15 21 18

25 21 23 21

20 15 18 16

Inter-vector Sort

• Two functions: vec_min and vec_max

– Returns a vector containing min(or max) elements
in each position

– EX: vec_max({25,23,21,16}{20,15,21,18})
={25,23,21,18}

– EX: vec_min({25,23,21,16}{20,15,21,18})
={20,15,21,16}

• Almost is what we need, except…

Rotate a Vector

25 23 21 16

20 15 21 18

25 23 21 20

16 20 15 21

25 23 21 18

15 21 16 20

25 23 21 20

21 16 20 15

25 23 21 18

20 15 18 16

vec_max

vec_min

25 23 21 20

15 21 16 18

vec_max

vec_min

25 23 21 20

21 16 20 15

vec_max

vec_min

25 23 21 21

16 20 15 20

vec_max

vec_min

• We can use
vec_perm to
rotate a vector

• The index
vector is
{4,5,6,7,8,9,10,
11,12,13,14,15,
0,1,2,3}

Intra-vector Sort

• Rely on four functions

– d = vec_cmpgt(a,b): compares elements of a and b,
if a[i]>=b[i], d[i]=F8. Otherwise, d[i]=0,for i=0,1,2,3.

– d = vec_and(a,b): d[i] = a[i]&b[i]

• bit level AND

– d = vec_and(a,b): d[i] = a[i]+b[i]

– d = vec_perm(a,b,c): we had learned it.

• How to do that?

– For example, sort {12,7,-5,9}

Some Analysis

• How many comparisons do we need?

– (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)

• Which can be compared (sorted) in parallel?

– For example: {(0,1), (2,3)}, {(0,2), (1,3)},{(0,3), (1,2)}

• What can we get if {(0,1), (2,3)} is sorted first?

– We get A[0]  A[1] and A[2]A*3+. What’s next?

• What can we get after {(0,2), (1,3)} is sorted?

– A[0]A[1], A[2]A[3] (why?) A[0]A[2],A[1]A[3].

• What do we miss?

Sorting Network

• Step 1: {(0,1)(2,3)}

• Step 2: {(0,2)(1,3)}

• Step 3: {(1,2)}

• Exercise: what’s the sorting network if we
sort {(0,3), (1,2)} first? And {(0,2), (1,3)} first?

• How to make comparison of ,…-?

– Need to compare elements using vec_cmpgt

– Need to exchange data according to the result

0
1
2
3

EX: Compare {(0,1),(2,3)}

b=vec_perm(a,a,{4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11});

//b[0]=a[1], b[1]=a[0], b[2]=a[3], b[3]=a[2]

d = vec_cmpgt(a,b)

// For a={12,7,-5,9}, b={7,12,9,-5} d={F8,0,0,F8}

• Exercise: what is the index array if we want to
compare {(0,2),(1,3)} or {(1,2)}?

– For {(0,2),(1,3)}, {8,9,10,11,0,1,2,3,12,13,14,15,4,5,6,7}

– For {(1,2)}, {0,1,2,3,8,9,10,11,4,5,6,7,12,13,14,15}

Vector Comparison Functions

• We need to exchange data if d[0]=F8 or d[2]=F8

• The only way to exchange data is by vec_perm.
– How to design the index array c?

• If d=={0,F8,0,F8}, c={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

• If d=={F8,0,0,F8}, c={4,5,6,7,0,1,2,3,8,9,10,11,12,13,14,15}

• If d=={0,F8,F8,0}, c={0,1,2,3,4,5,6,7,12,13,14,15,8,9,10,11}

• If d=={F8,0,F8,0}, c={4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11}

– One possible way to generate c = base+mask
• base can be {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}

• mask can be and(d,{4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4})

Exercises

• How to design the index array for {(0,2)(1,3)}?
– base={0,1,2,3,5,6,7,8, 0,1,2,3,5,6,7,8}

– mask={8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}

• How to design the index array for {(0,3)(1,2)}?
– base={0,1,2,3,5,6,7,8, 5,6,7,8,0,1,2,3}

– mask={12,12,12,12,4,4,4,4,4,4,4,4,12,12,12,12}

• How to design the index array for {(1,2)}?
– base={0,1,2,3,5,6,7,8, 5,6,7,8,12,13,14,15}

– mask={0,0,0,0, 4,4,4,4,4,4,4,4,0,0,0,0}

Homework

• Read textbook chap 9.

• Implement "quick sort" or "merge sort"

– Implement the sequential code

– Use vectorized statements.

– Compare the performance for different
implementations and to the insertion sort in the
textbook

