
CUDA Programming

Week 2. CUDA Memory

Outline

• Memory review

• Data alignment

• Global memory coalesced

• Memory Padding

• Tiling

• Homework assignment

Device memory

To host

Salient features of device memory

Memory Location Cached Access Scope Lifetime

Register On chip N R/W 1 thread Thread

Local RAM N R/W 1 thread Thread

Shared On chip N R/W Threads in
a block

Block

Global RAM N R/W All thread
+ host

Host
allocation

Constant RAM Y R All thread
+ host

Host
allocation

Texture RAM Y R All thread
+ host

Host
allocation

Size and speed

• Size
– Global and texture is limited by the size of RAM

– Local memory: limited 16 KB per thread

– Shared memory: limited 16KB

– Constant memory: 64 KB in total

– 8,192 (or 16,384) 32-bit registers per SM

• Speed:
– Global, local, texture << constant << shared,

register

Host-Device Data Transfers

• Device memory to host memory bandwidth
much lower than device memory to device
bandwidth

– 4GB/s peak (PCI) vs. 76 GB/s peak (Tesla C870)

• Method 1: Group transfers

– One large transfer is much better than many
small ones (memory coalescing)

• Method 2: Minimize transfers

– Increase computation-communication ratio (tiling)

DATA ALIGNMENT

Data alignment

• Device can read 4-byte, 8-byte, or 16-byte
words from global memory into registers in a
single instruction.

– The following code is in single instruction

• Reading mis-aligned 8-byte or 16-byte words
produces incorrect results

__device__ type device[32];

type data = device[tid];

Data alignment

• A data of size 4-byte(8-byte, 16 byte) must
aligned to 4-byte(8-byte, 16 byte).

– Built-in types, like float2 or float4, fulfill this
requirement automatically.

– Structures need __align__(8) or __align__(16)

struct

__align__(8){

float a;

float b;

};

struct

__align__(16){

float a;

float b;

Float c;

};

struct

__align__(16) {

float a;

float b;

float c;

float d;

float e;

};

Two load
instructions

Build-in data type

• The alignment requirement is automatically
fulfilled for built-in types, like float2 or float4.

Data type Size Alignment

float2 8 byte 8

float3 12 byte 4

float4 16 byte 16

MEMORY COALESCING

Global memory coalescing

• Global memory bandwidth is used most
efficiently when the simultaneous memory
accesses by 16 threads

• A contiguous region of global memory:

– 64 bytes - each thread reads a word: int, float, …

– 128 bytes - each thread reads a double-word: int2,
float2, …

– 256 bytes – each thread reads a quad-word: int4,
float4, …

Memory coalescing for cuda 1.1

• The global memory access by 16 threads is
coalesced into one or two memory
transactions if all 3 conditions are satisfied

1. Threads must access

• Either 4-byte words: one 64-byte transaction,

• Or 8-byte words: one 128-byte transaction,

• Or 16-byte words: two 128-byte transactions;

2. All 16 words must lie in the same segment

3. Threads must access words sequentially.

Coalesced Access (Cuda 1.0-1.1)

Uncoalesced Access (Cuda 1.0-1.1)

non-sequential float memory access, resulting in 16 memory transactions.

access with a misaligned starting address, resulting in 16 memory transactions.

Uncoalesced Access (Cuda 1.0-1.1)

• non-contiguous float
memory access,
resulting in 16
memory transactions.

Uncoalesced Access (Cuda 1.0-1.1)

• non-coalesced float3
memory access,
resulting in 16
memory transactions.

Things changed

• In cuda 1.2 and later version, the restrictions
are relaxed

– For Cuda 1.1 or lower versions, misaligned access
pattern is split into 16 transactions

– For Cuda 1.2 or higher versions, misaligned access
pattern, like the figure,
only has in one
transactions

Memory coalescing for cuda 1.2

• The global memory access by 16 threads is
coalesced into a single memory transaction as
soon as the words accessed by all threads lie
in the same segment of size equal to:

– 32 bytes if all threads access 1-byte words,

– 64 bytes if all threads access 2-byte words,

– 128 bytes if all threads access 4-byte or 8-byte
words.

Coalesced Access (Cuda 1.2 later)

• Random float memory access within a 64B
segment, resulting in one memory transaction.

Coalesced Access (Cuda 1.2 later)

• misaligned float memory access, resulting in
one transaction.

Coalesced Access (Cuda 1.2 later)

• misaligned float memory access, resulting in
two transactions.

How important it is?

• EX1: Let offset run from 1 to 32

__global__ void offsetCopy

(float *odata,

float* idata,

int offset)

{

int xid = blockIdx.x*

blockDim.x+

threadIdx.x+

offset;

odata[xid] = idata[xid];

}

EX2, Strided Accesses

• stride changes from 1 to 18
__global__ void strideCopy(float

odata, float

idata, int stride){

int xid =(blockIdx.x* blockDim.x+

threadIdx.x)*stride;

odata[xid]=idata[xid];

}

Make memory access coalesced

1. Use a Structure of Arrays (SoA) instead of
Array of Structures (AoS)

2. Use shared memory to achieve coalescing

– Example in the following slices

Example: float3 Code

__global__ void accessFloat3(float3 *d_in,

float3 d_out){

int index = blockIdx.x * blockDim.x +

threadIdx.x;

float3 a = d_in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d_out[index] = a;

}

• Read an array of float 3, add 2 to each element

• float3 is of 12 bytes, not 4, 8 or 16.

Coalesced Access: float3 Case

• Use shared memory to allow coalescing

– Need sizeof(float3)*(threads/block) bytes

– Each thread reads 3 scalar floats:

– Offsets: 0, (threads/block), 2*(threads/block)

– These is likely processed by other threads, so sync

• Processing

– Each thread retrieves its float3 from SMEM array

– Cast the SMEM pointer to (float3*)

– Use thread ID as index

__global__ void accessInt3Shared(float *g_in,float

*g_out){

int index = 3*blockIdx.x*blockDim.x+threadIdx.x;

__shared__ float s_data[256*3];

s_data[threadIdx.x] = g_in[index];

s_data[threadIdx.x+256] = g_in[index+256];

s_data[threadIdx.x+512] = g_in[index+512];

__syncthreads();

float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;

a.y += 2;

a.z += 2;

((float3*)s_data)[threadIdx.x] = a;

__syncthreads();

g_out[index] = s_data[threadIdx.x];

g_out[index+256] = s_data[threadIdx.x+256];

g_out[index+512] = s_data[threadIdx.x+512];

}

Coalescing: Timing Results

• Experiment:

– Kernel: read a float, increment, write back

– 3M floats (12MB), Times averaged over 10K runs

• 12K blocks x 256 threads reading floats:

– 356μs – coalesced

– 3,494μs – permuted/misaligned thread access

• 4K blocks x 256 threads reading float3s:

– 3,302μs – float3 uncoalesced

– 359μs – float3 coalesced through shared memory

MEMORY PADDING

Common Access Pattern: 2D Array

• Each thread of index (tx,ty) accesses one
element of a 2D array located at address
BaseAddress of type type* and of width N
using the following address

BaseAddress + N*ty + tx

• How to ensure the memory access is coalesced?
– blockDim.x = 16x and N=16x

– Recall EX1 (offset) and EX2 (stride)

Memory padding

• We can control blockDim.x, but the array size
is not always 16x

• Memory padding: create an array of
width=16x, and fill the unused part by 0

• pitch(投擲,音高,間距): the leading dimension
of an array A (called lda)

– Since C/C++ is row major, the leading dimension is
the row-width (number of elements in a row)

CUDA supporting API

• Cuda provides functions to allocate memory
and copy data for 2D array

• Similar functions also available for 3D array

cudaMallocPitch((void**)&devPtr, size_t* &pitch,

size_t width*sizeof(type), //in bytes

size_t height);

cudaMemcpy2D(void * dst,

size_t dpitch,

const void * src,

size_t spitch,

size_t width,

size_t height,

enum cudaMemcpyKind kind)

http://developer.download.nvidia.com/compute/cuda/3_0-Beta1/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html

TILING

Computation/communication ratio

• Let f be the number of flops, m be number of
memory access. Then q = f/m is the
computation/communication ratio

• Let tc be the time per flops, tm be the time per
memory access. The running time is

– tc improves 60% per year, tm improves 20% per year




















c

m
c

c

m
cmc

t

t

q
ft

ft

mt
ftmtft

1
11

Some examples

• Vector addition: z = x+y

– f=n, m=3n, q = 1/3

• Matrix-vector multiplication: y=Ax

– f = 2n2, m = n2+2n, q = 2

• Matrix-matrix multiplication: C= AB

– f = 2n3, m = 3n2, q = 2n/3

– Therefore, the larger n, the better utilization

– But, can we really achieve that

MMM on CPU

void MatrixMulOnHost(float* A, float* B,

float* C, int n){

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {

double sum = 0;

for (int k = 0; k < n; ++k) {

double a = A[i * n + k];

double b = B[k * n + j];

sum += a * b;

}

C[i * n + j] = sum;

}

}

MMM on GPU
__global__ void MatrixMulKernel(float* A,float*

B,float* C,int n){

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

float Cvalue = 0;

for (int k = 0; k < n; ++k){

float Aelement = A[ty * n + k];

float Belement = B[k * n + tx];

Cvalue += Aelement * Belement;

}

// Write to device memory;

// each thread writes 1

// element

C[ty * n + tx] = Cvalue;

}

A

B

C

The C-C ratio

• One thread computes an element

• A and B are read n times from global memory:
2n3.

• The c-c ratio q=2n3/2n3=1.
A

B

C




















c

m
c

c

m
cmc

t

t

q
ft

ft

mt
ftmtft

1
11

How to improve it?

• Use Shared Memory to reuse global memory
data (Hundreds of times faster)

• The bandwidth from host memory to device
memory is 8GB/s (PCI expressx2 GEN2)

– Higher bandwidth is for pinned memory (later)

• In G80, the bandwidth from device memory to
GPU is 86.4GB/s

– 900MHZ memory clock, 384 bit interface, 2 issues
(DDR RAM: double data rate)

0.9*384/8*2=86.4

Basic Idea

• Load A,B into shared memory and have
several threads use the local version

– Shared memory has limited size

– Suppose the size of shared memory can store 1
column and 1 row of A and B

– Elements of C can be stored in registers

• Memory read can be parallelized too. (how?)

– Recall the float3 Code

MMM on GPU v2
__global__ void MatrixMulKernel(float* A,

float* B,float* C,int n){

int tx = threadIdx.x;

int ty = threadIdx.y;

extern __shared__ float SA[];

SA[ty*n+k] = A[ty*n+k];

__syncthreads();

float Cvalue = 0;

for (int k = 0; k < n; ++k){

float Bval = B[k*n+tx];

Cvalue+=SA[ty*n+k]*Bval;

}

// Write to device memory;

C[ty*n+tx] = Cvalue;

}

A

B

C

The C-C ratio

• One block of threads compute a row of C

– A is read n times from global memory: n2.

– B is read n times from global memory: n3.

– The c-c ratio q=2n3/(n3+n2) ~ 2.

• Another problem: the matrix size is limited by

– Number of threads per block

– The size of shared memory




















c

m
c

c

m
cmc

t

t

q
ft

ft

mt
ftmtft

1
11

Another try

• If the matrix size is small enough, say 16x16,
then A and B can both be loaded into the
shared memory  n2 memory access

– 16x16x4x3 =3K < 16K

– The c-c ratio is n/2

• Partition A, B, and C into
N×N blocks. Each block
submatrix is of size n/N.

Md

Nd

Pd

Pdsu

b

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Block matrix-matrix multiplication

• Partition A, B, and C into N×N blocks. Each
submatrix is of size n/N. Suppose M>3(n/N)2.

• Denote A[I, J] the I, J block submatrix of A.

for I = 1:N %
for J = 1:N % read C[I,J] into fast memory

for K = 1:N % read A[I,K] and B[K,J] into fast memory
C[I,J]=C[I,J] + A[I,K]*B[K,J]

end
end

end

The C-C ratio

• Memory access counts.

– Read B N times: Nn2.

– Read A N time: Nn2.

– Write C 1 time: n2.

• Total memory access is (2N +1)n2 ~ 2Nn2.

• The ratio q=2n3/(2Nn2) = n/N

• Which N can maximize the performance?

Performance of G80 (8800GTX)

• Peak performance of G80 is 345.6GFLOPS

– 128 MP; each runs 1.35GHZ;

– One mult-and-add per cycle for floating point
operations (more on this later)

• Need two floating numbers (8 bytes) for one
mult-and-add4 bytes for one operation

– For peak performance, need 4*345.6=1386GB/s

• Memory bandwidth of G80 is 86.4GB/s

– Need c-c ratio 1386/86.4 > 16.04

Homework

• Read chap3 and chap4 from UIUC’s class

– http://courses.ece.illinois.edu/ece498/al/Syllabus.html

• Implement matrix-matrix multiplication and using
memory padding and tiling

– See this webpage for reference

– http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9
015F!3435.entry

– Write different versions and compare their
performance to learn the effectiveness of each
techniques

http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry
http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry

