CUDA Programming
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Salient features of device memory
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Size and speed

* Size
— Global and texture is limited by the size of RAM
— Local memory: limited 16 KB per thread
— Shared memory: limited 16KB
— Constant memory: 64 KB in total
— 8,192 (or 16,384) 32-bit registers per SM
* Speed:

— Global, local, texture << constant << shared,
register



Host-Device Data Transfers

* Device memory to host memory bandwidth

much lower than device memory to device
bandwidth

— 4GB/s peak (PCl) vs. 76 GB/s peak (Tesla C870)

* Method 1: Group transfers

— One large transfer is much better than many
small ones (memory coalescing)

e Method 2: Minimize transfers

— Increase computation-communication ratio (tiling)



DATA ALIGNMENT



Data alighment

* Device can read 4-byte, 8-byte, or 16-byte
words from global memory into registers in a
single instruction.

— The following code is in single instruction

~ device @ type devicel[32];
type data = devicel[tid];

 Reading mis-aligned 8-byte or 16-byte words
produces incorrect results



Data alighment

* A data of size 4-byte(8-byte, 16 byte) must
aligned to 4-byte(8-byte, 16 byte).
— Built-in types, like float2 or float4, fulfill this
requirement automatically.

— Structures need  align  (8) or _align_ (16)

struct
__align (16) {
float a;

float b; Two load
Float c; instructions




Build-in data type

* The alignment requirement is automatically
fulfilled for built-in types, like float2 or float4.

Datatype | Size | Alignment

f
f
f

oat2 8 byte 8
oat3 12 byte 4
oat4 16 byte 16



MEMORY COALESCING



Global memory coalescing

* Global memory bandwidth is used most
efficiently when the simultaneous memory
accesses by 16 threads

* A contiguous region of global memory:
— 64 bytes - each thread reads a word: int, float, ...

— 128 bytes - each thread reads a double-word: int2,
float2, ...

— 256 bytes — each thread reads a quad-word: int4,
float4, ...



Memory coalescing for cuda 1.1

* The global memory access by 16 threads is
coalesced into one or two memory
transactions if all 3 conditions are satisfied

1. Threads must access
» Either 4-byte words: one 64-byte transaction,

* Or 8-byte words: one 128-byte transaction,
e Or 16-byte words: two 128-byte transactions;

2. All 16 words must lie in the same segment
3. Threads must access words sequentially.



Coalesced Access (Cuda 1.0-1.1)
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Uncoalesced Access (Cuda 1.0-1.1)
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Permuted Access by Threads

non-sequential float memory access, resulting in 16 memory transactions.
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Misaligned Starting Address (not a multiple of 64)

access with a misaligned starting address, resulting in 16 memory transactions.



Uncoalesced Access (Cuda 1.0-1.1)

* non-contiguous float
memory access,
resulting in 16 Thread 1 b Address 132
memory transactions.

Thread 0 # Address 128

Thread 2 #» Address 136
Thread 3 Address 140
Thread 4 Address 144

Thread 5 Address 148




Uncoalesced Access (Cuda 1.0-1.1)

* non-coalesced float3 Thread 0 + Address 128
memory access,
resulting in 16
memory transactions.

Thread 1 » Address 140

Thread 2 p Address 152




Things changed

* In cuda 1.2 and later version, the restrictions
are relaxed

— For Cuda 1.1 or lower versions, misaligned access
pattern is split into 16 transactions

— For Cuda 1.2 or higher versions, misaligned access
pattern, like the figure,
only has in one L_—J
transactions %L/%%W




Memory coalescing for cuda 1.2

* The global memory access by 16 threads is
coalesced into a single memory transaction as
soon as the words accessed by all threads lie
in the same segment of size equal to:

— 32 bytes if all threads access 1-byte words,
— 64 bytes if all threads access 2-byte words,

— 128 bytes if all threads access 4-byte or 8-byte
words.



Coalesced Access (Cuda 1.2 later)

 Random float memory access within a 64B
segment, resulting in one memory transaction.
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* misaligned float memory access, resulting in

Coalesced Access (Cuda 1.2 later)
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Coalesced Access (Cuda 1.2 later)

* misaligned float memory access, resulting in
two transactions.
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How important it is?

e EX1: Let offset run from 1 to 32
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Copy with Offset

__global  void offsetCopy
(float *odata,
float* idata,
int offset)
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int xid = blockIdx.x*
blockDim.x+
threadIdx.x+
offset;
odata[xid] = idatal[xid]; 0 2 4 6 8 10 12 14 16
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}

EX2, Strided Accesses

e stride changes from 1 to 18

global  wvoid strideCopy (float
*odata, float*™
idata, int stride) {
int xid =(blockIdx.x* blockDim.x+
threadldx.x) *stride;
odata[xid]=idata[xid];

20
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Make memory access coalesced

1. Use a Structure of Arrays (SoA) instead of
Array of Structures (AoS)

X y Z Point structure
X Y Zz X Y Zz X Y z AoS
X X X V V V Z Z Z SoA

2. Use shared memory to achieve coalescing
— Example in the following slices



Example: float3 Code

* Read an array of float 3, add 2 to each element
* float3 is of 12 bytes, not 4, 8 or 16.

__global  wvoid accessFloat3(float3 *d 1in,
float3 d out) {

int 1ndex = blockIdx.x * blockDim.x +

threadldx.x;

float3 a = d in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d out[index] = a;



Coalesced Access: float3 Case

e Use shared memory to allow coalescing
— Need sizeof(float3)*(threads/block) bytes
— Each thread reads 3 scalar floats:
— Offsets: O, (threads/block), 2*(threads/block)
— These is likely processed by other threads, so sync

* Processing

— Each thread retrieves its float3 from SMEM array
— Cast the SMEM pointer to (float3*)
— Use thread ID as index



~_global  void accessInt3Shared(float *g in, float
*g_out) {

int index = 3*blockIdx.x*blockDim.x+threadldx.x;
shared float s datal[256*3];

s data[threadIldx.x] = g i1n[index];

s data[threadIldx.x+256] = g 1n[index+256];
s datal[threadIldx.x+512] = g in[index+512];
~_syncthreads () ;

float3 a = ((float3*)s data) [threadIdx.x];
a.x += 2;

a.y t= 2;

a.z += 2;

((float3*)s data) [threadldx.x] = a;
__syncthreads () ;

g out[index] = s data[threadIdx.x];

g out[index+256] = s data[threadIdx.x+256];

g out[index+512] = s data[threadIldx.x+512];
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Coalescing: Timing Results

* Experiment:
— Kernel: read a float, increment, write back
— 3M floats (12MB), Times averaged over 10K runs

12K blocks x 256 threads reading floats:

— 356us — coalesced
— 3,494us — permuted/misaligned thread access

e 4K blocks x 256 threads reading float3s:
— 3,302pus — float3 uncoalesced
— 359us — float3 coalesced through shared memory



MEMORY PADDING



Common Access Pattern: 2D Array

e Each thread of index (tx,ty) accesses one
element of a 2D array located at address
BaseAddress of type type* and of width N

using the following address
BaseAddress + N*ty + tx
* How to ensure the memory access is coalesced?

—blockDim.x = 16x and N=lob6bx
— Recall EX1 (offset) and EX2 (stride)



Memory padding

* We can control blockDim.x, but the array size
IS not always 16x

* Memory padding: create an array of
width=16x, and fill the unused part by O

o pitch(&#, 2 =, [EFE): the leading dimension
of an array A (called Ida)

— Since C/C++ is row major, the leading dimension is
the row-width (number of elements in a row)



CUDA supporting API

* Cuda provides functions to allocate memory
and copy data for 2D array

cudaMallocPkPitch ((vo1id**) &devPtr, size t* &pitch,
size t width*sizeof (type), //in bytes
size t height);
cudaMemcpy2D (void * dst,
size t dpitch,
const void * src,
size t spitch,
size t width,
size t height,
enum cudaMemcpyKind kind)

* Similar functions also available for 3D array


http://developer.download.nvidia.com/compute/cuda/3_0-Beta1/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html

TILING



Computation/communication ratio

* Let f be the number of flops, m be number of
memory access. Then = f/m is the
computation/communication ratio

* Let t, be the time per flops, t,, be the time per
memory access. The running time is

ft. +mt = ftc(1+ mtmj = ftc[1+£t—m]
ﬂ:C q tC

— 1. improves 60% per year, t,, improves 20% per year




Some examples

* Vector addition: z = x+y
—f=n, m=3n,q=1/3

* Matrix-vector multiplication: y=Ax
—f=2n%, m=n%+2n,q =2

* Matrix-matrix multiplication: C= AB
—f=2n3, m=3n? q=2n/3
— Therefore, the larger n, the better utilization
— But, can we really achieve that



MMM on CPU

vold MatrixMulOnHost (float* A,

float* C, 1nt n) {

for (int 1 = 0; 1 < n;
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double sum
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MMM on GPU

~_global  void MatrixMulKernel (float* A, float*
B, float* C,int n) {
// 2D Thread ID
int tx = threadldx.x;
int ty = threadIdx.y;
float Cvalue = 0;
for (int k = 0; k < n; ++k){
float Aelement = A[ty * n + k];
float Belement = B[k * n + tx];
Cvalue += Aelement * Belement;
}
// Write to device memory;
// each thread writes 1
// element
Clty * n + tx] = Cvalue;

A
\ 4
A




The C-C ratio

* One thread computes an element

 Aand B are read n times from global memory:
2n3.

ft. +mt, = ftc(1+ n;:mj = ftC(1+£t—mj

* The c-c ratio g=2n3/2n3=1.




How to improve it?

* Use Shared Memory to reuse global memory
data (Hundreds of times faster)

 The bandwidth from host memory to device
memory is 8GB/s (PCl expressx2 GEN2)
— Higher bandwidth is for pinned memory (later)

* In G80, the bandwidth from device memory to
GPUis 86.4GB/s  0.9%384/8*2=86.4

— 900MHZ memory clock, 384 bit interface, 2 issues
(DDR RAM: double data rate)



Basic Idea

* Load A,B into shared memory and have
several threads use the local version
— Shared memory has limited size

— Suppose the size of shared memory can store 1
column and 1 row of A and B

— Elements of C can be stored in registers
e Memory read can be parallelized too. (how?)
— Recall the float3 Code



MMM on GPU v2

__global  wvoid MatrixMulKernel (float* A,
float* B,float* C,int n) {
int tx = threadldx.x;

int ty = threadldx.y;
extern  shared  float SA[];
SA[ty*n+tk] = A[ty*n+t+k];

__syncthreads() ;

float Cvalue = 0;

for (int k = 0; k < n; ++k){
float Bval = Blk*n+tx];
Cvalue+=SA[ty*n+k] *Bval;

}

// Write to device memory;

Clty*nt+ttx] = Cvalue;

A
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A
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The C-C ratio

* One block of threads compute a row of C
— Ais read n times from global memory: n?.
— B is read n times from global memory: n3.
— The c-c ratio q=2n3/(n3+n?) ~

2.
ft. +mt = ftc[1+ mtmj ft (1+ Et—j
ft. qt

* Another problem: the matrix size is limited by

— Number of threads per block
— The size of shared memory



Another try

* |f the matrix size is small enough, say 16x16,
then A and B can both be loaded into the
shared memory =2 n? memory access
— 16x16x4x3 =3K < 16K II[
— The c-c ratio is n/2

e Partition A, B, and C into

NxN blocks. Each block
submatrix is of size n/N.




Block matrix-matrix multiplication

e Partition A, B, and C into NxN blocks. Each
submatrix is of size n/N. Suppose M>3(n/N)?.

 Denote A[l, J] the |, J block submatrix of A.

forI=1:N%
for J = I:N % read C[I,J] into fast memory
for K= 1:N % read A[I K] and B[K,J] into fast memory
C[T,TI=C[I,T]+ A[LKI*B[K,JT]
end
end
end



The C-C ratio

I\/Iemory access counts.
— Read B N times: Nn?.

— Read A N time: Nn?.

— Write C 1 time: n?.

Total memory access is (2N +1)n? ~ 2Nn?.
The ratio g=2n3/(2Nn?) = n/N
Which N can maximize the performance?



Performance of G80 (8800GTX)

* Peak performance of G80 is 345.6GFLOPS
— 128 MP; each runs 1.35GHZ;

— One mult-and-add per cycle for floating point
operations (more on this later)

* Need two floating numbers (8 bytes) for one
mult-and-add=>»4 bytes for one operation

— For peak performance, need 4*345.6=1386GB/s

* Memory bandwidth of G80 is 86.4GB/s
— Need c-c ratio 1386/86.4 > 16.04



Homework

* Read chap3 and chap4 from UIUC’s class
— http://courses.ece.illinois.edu/ece498/al/Syllabus.html

* Implement matrix-matrix multiplication and using
memory padding and tiling

— See this webpage for reference

— http://heresy.spaces.live.com/blog/cns!E0070FBS8ECF9
015F!3435.entry

— Write different versions and compare their
performance to learn the effectiveness of each
techniques



http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry
http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry

