CUDA Programming

Week 2. CUDA Memory

Outline

Memory review

Data alignment

Global memory coalesced
Memory Padding

Tiling

Homework assighment

To host

Device memory

Device

GPU

Multiprocessor

Multiprocessor

Multiprocessor -

Registers

Shared Memory

Salient features of device memory

emory Lscton G e soe_uiime__

Register On chip R/W 1thread Thread
Local RAM N R/W 1thread Thread
Shared Onchip N R/W Threadsin Block

a block
Global RAM N R/W All thread Host

+ host allocation
Constant RAM Y R All thread Host

+ host allocation
Texture RAM Y R All thread Host

+ host allocation

Size and speed

* Size
— Global and texture is limited by the size of RAM
— Local memory: limited 16 KB per thread
— Shared memory: limited 16KB
— Constant memory: 64 KB in total
— 8,192 (or 16,384) 32-bit registers per SM
* Speed:

— Global, local, texture << constant << shared,
register

Host-Device Data Transfers

* Device memory to host memory bandwidth

much lower than device memory to device
bandwidth

— 4GB/s peak (PCl) vs. 76 GB/s peak (Tesla C870)

* Method 1: Group transfers

— One large transfer is much better than many
small ones (memory coalescing)

e Method 2: Minimize transfers

— Increase computation-communication ratio (tiling)

DATA ALIGNMENT

Data alighment

* Device can read 4-byte, 8-byte, or 16-byte
words from global memory into registers in a
single instruction.

— The following code is in single instruction

~ device @ type devicel[32];
type data = devicel[tid];

 Reading mis-aligned 8-byte or 16-byte words
produces incorrect results

Data alighment

* A data of size 4-byte(8-byte, 16 byte) must
aligned to 4-byte(8-byte, 16 byte).
— Built-in types, like float2 or float4, fulfill this
requirement automatically.

— Structures need align (8) or _align_ (16)

struct
__align (16) {
float a;

float b; Two load
Float c; instructions

Build-in data type

* The alignment requirement is automatically
fulfilled for built-in types, like float2 or float4.

Datatype | Size | Alignment

f
f
f

oat2 8 byte 8
oat3 12 byte 4
oat4 16 byte 16

MEMORY COALESCING

Global memory coalescing

* Global memory bandwidth is used most
efficiently when the simultaneous memory
accesses by 16 threads

* A contiguous region of global memory:
— 64 bytes - each thread reads a word: int, float, ...

— 128 bytes - each thread reads a double-word: int2,
float2, ...

— 256 bytes — each thread reads a quad-word: int4,
float4, ...

Memory coalescing for cuda 1.1

* The global memory access by 16 threads is
coalesced into one or two memory
transactions if all 3 conditions are satisfied

1. Threads must access
» Either 4-byte words: one 64-byte transaction,

* Or 8-byte words: one 128-byte transaction,
e Or 16-byte words: two 128-byte transactions;

2. All 16 words must lie in the same segment
3. Threads must access words sequentially.

Coalesced Access (Cuda 1.0-1.1)

t0 11 t2 3 t14 115

SRR ‘o

L o

128 132 136 140 144 184 188 192

All threads participate

t0 t1 t2 i3 t14 115

SRAEANE ‘o

OG0 OO0

128 132 136 140 144 184 188 192

Some Threads Do Not Participate

Uncoalesced Access (Cuda 1.0-1.1)

t0 t1 t2 i3 t14 t15

b '

Qoo LI
128 132 136 140 144 184 188 192

Permuted Access by Threads

non-sequential float memory access, resulting in 16 memory transactions.

t0 11 t2 i3 113 114 t15
128 132 136 140 144 184 188 192

Misaligned Starting Address (not a multiple of 64)

access with a misaligned starting address, resulting in 16 memory transactions.

Uncoalesced Access (Cuda 1.0-1.1)

* non-contiguous float
memory access,
resulting in 16 Thread 1 b Address 132
memory transactions.

Thread 0 # Address 128

Thread 2 #» Address 136
Thread 3 Address 140
Thread 4 Address 144

Thread 5 Address 148

Uncoalesced Access (Cuda 1.0-1.1)

* non-coalesced float3 Thread 0 + Address 128
memory access,
resulting in 16
memory transactions.

Thread 1 » Address 140

Thread 2 p Address 152

Things changed

* In cuda 1.2 and later version, the restrictions
are relaxed

— For Cuda 1.1 or lower versions, misaligned access
pattern is split into 16 transactions

— For Cuda 1.2 or higher versions, misaligned access
pattern, like the figure,
only has in one L_—J
transactions %L/%%W

Memory coalescing for cuda 1.2

* The global memory access by 16 threads is
coalesced into a single memory transaction as
soon as the words accessed by all threads lie
in the same segment of size equal to:

— 32 bytes if all threads access 1-byte words,
— 64 bytes if all threads access 2-byte words,

— 128 bytes if all threads access 4-byte or 8-byte
words.

Coalesced Access (Cuda 1.2 later)

 Random float memory access within a 64B
segment, resulting in one memory transaction.

NG RGN S S| 2 S| =

8] (*8]|=8)|~8]|"8]|°8|| "8 |8 8||° “i;&“iﬂ”i °§
Bl Bl Bl Bl Bl Bl Bln Elw Bl Bl Bl Ble Blx Bl Bl Bl Bl Bl
MEEﬁfgnﬁmgmégéi@uﬁmgmggétﬁagmémémﬁnﬁn

JUEmigsﬁ ar9

* misaligned float memory access, resulting in

Coalesced Access (Cuda 1.2 later)

i

96T

S5Uppv

one transaction.

ZbT

S5Uppv

ST

88T

S5dppPy

3
~f

I
d

£T

08T

S5dppPy

7
~
;

LT

0T
pe=asny1

g
"
=

i

ZLT

aT
ssaUppy

o95T

S5Uppv

ZST

S5Uppv

peaayy

8T

S5dppPy h I UL

it

S5dppPy

OFT

S5dppPy

ZET

S5dppPy

juawbds g8z 1T

Coalesced Access (Cuda 1.2 later)

* misaligned float memory access, resulting in
two transactions.

BBl e e HHPHEPEE
s iR I
-

Juamaaﬁgw JUELMHEE

gg_l!-!-'-..: ,

How important it is?

e EX1: Let offset run from 1 to 32

140

Copy with Offset

__global void offsetCopy
(float *odata,
float* idata,
int offset)

=
Pk
=

=
-
=

oo
=

o
=

int xid = blockIdx.x*
blockDim.x+
threadIdx.x+
offset;
odata[xid] = idatal[xid]; 0 2 4 6 8 10 12 14 16
} Offset
¥ GTX280
-4 FX5600

P
3

Effective Bandwidth (GB/s)
h
=

=

}

EX2, Strided Accesses

e stride changes from 1 to 18

global wvoid strideCopy (float
odata, float™
idata, int stride) {
int xid =(blockIdx.x* blockDim.x+
threadldx.x) *stride;
odata[xid]=idata[xid];

20

Effective Bandwidth (GB/s)

Copy with Stride

0 2 4 6 8 10 12 14 16 18
Stride

¥ GTX280
-4 FX5600

Make memory access coalesced

1. Use a Structure of Arrays (SoA) instead of
Array of Structures (AoS)

X y Z Point structure
X Y Zz X Y Zz X Y z AoS
X X X V V V Z Z Z SoA

2. Use shared memory to achieve coalescing
— Example in the following slices

Example: float3 Code

* Read an array of float 3, add 2 to each element
* float3 is of 12 bytes, not 4, 8 or 16.

__global wvoid accessFloat3(float3 *d 1in,
float3 d out) {

int 1ndex = blockIdx.x * blockDim.x +

threadldx.x;

float3 a = d in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d out[index] = a;

Coalesced Access: float3 Case

e Use shared memory to allow coalescing
— Need sizeof(float3)*(threads/block) bytes
— Each thread reads 3 scalar floats:
— Offsets: O, (threads/block), 2*(threads/block)
— These is likely processed by other threads, so sync

* Processing

— Each thread retrieves its float3 from SMEM array
— Cast the SMEM pointer to (float3*)
— Use thread ID as index

~_global void accessInt3Shared(float *g in, float
*g_out) {

int index = 3*blockIdx.x*blockDim.x+threadldx.x;
shared float s datal[256*3];

s data[threadIldx.x] = g i1n[index];

s data[threadIldx.x+256] = g 1n[index+256];
s datal[threadIldx.x+512] = g in[index+512];
~_syncthreads () ;

float3 a = ((float3*)s data) [threadIdx.x];
a.x += 2;

a.y t= 2;

a.z += 2;

((float3*)s data) [threadldx.x] = a;
__syncthreads () ;

g out[index] = s data[threadIdx.x];

g out[index+256] = s data[threadIdx.x+256];

g out[index+512] = s data[threadIldx.x+512];

GMEM

oo

o
o
o

SMEM

L daig

z deig

SMEM

Coalescing: Timing Results

* Experiment:
— Kernel: read a float, increment, write back
— 3M floats (12MB), Times averaged over 10K runs

12K blocks x 256 threads reading floats:

— 356us — coalesced
— 3,494us — permuted/misaligned thread access

e 4K blocks x 256 threads reading float3s:
— 3,302pus — float3 uncoalesced
— 359us — float3 coalesced through shared memory

MEMORY PADDING

Common Access Pattern: 2D Array

e Each thread of index (tx,ty) accesses one
element of a 2D array located at address
BaseAddress of type type* and of width N

using the following address
BaseAddress + N*ty + tx
* How to ensure the memory access is coalesced?

—blockDim.x = 16x and N=lob6bx
— Recall EX1 (offset) and EX2 (stride)

Memory padding

* We can control blockDim.x, but the array size
IS not always 16x

* Memory padding: create an array of
width=16x, and fill the unused part by O

o pitch(&#, 2 =, [EFE): the leading dimension
of an array A (called Ida)

— Since C/C++ is row major, the leading dimension is
the row-width (number of elements in a row)

CUDA supporting API

* Cuda provides functions to allocate memory
and copy data for 2D array

cudaMallocPkPitch ((vo1id**) &devPtr, size t* &pitch,
size t width*sizeof (type), //in bytes
size t height);
cudaMemcpy2D (void * dst,
size t dpitch,
const void * src,
size t spitch,
size t width,
size t height,
enum cudaMemcpyKind kind)

* Similar functions also available for 3D array

http://developer.download.nvidia.com/compute/cuda/3_0-Beta1/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html

TILING

Computation/communication ratio

* Let f be the number of flops, m be number of
memory access. Then = f/m is the
computation/communication ratio

* Let t, be the time per flops, t,, be the time per
memory access. The running time is

ft. +mt = ftc(1+ mtmj = ftc[1+£t—m]
ﬂ:C q tC

— 1. improves 60% per year, t,, improves 20% per year

Some examples

* Vector addition: z = x+y
—f=n, m=3n,q=1/3

* Matrix-vector multiplication: y=Ax
—f=2n%, m=n%+2n,q =2

* Matrix-matrix multiplication: C= AB
—f=2n3, m=3n? q=2n/3
— Therefore, the larger n, the better utilization
— But, can we really achieve that

MMM on CPU

vold MatrixMulOnHost (float* A,

float* C, 1nt n) {

for (int 1 = 0; 1 < n;

for (int j = 0;
double sum

for (int k
double

double

sum +=

» O

}
Cli * n + 7]

O .

4

4

++1)

7 < ny;
O .

k
[1
[k

4

A
B
b

Sum,

float* B,

++J) |

< n; ++k)

* n + kJ;
*n + Jl;

{

MMM on GPU

~_global void MatrixMulKernel (float* A, float*
B, float* C,int n) {
// 2D Thread ID
int tx = threadldx.x;
int ty = threadIdx.y;
float Cvalue = 0;
for (int k = 0; k < n; ++k){
float Aelement = A[ty * n + k];
float Belement = B[k * n + tx];
Cvalue += Aelement * Belement;
}
// Write to device memory;
// each thread writes 1
// element
Clty * n + tx] = Cvalue;

A
\ 4
A

The C-C ratio

* One thread computes an element

 Aand B are read n times from global memory:
2n3.

ft. +mt, = ftc(1+ n;:mj = ftC(1+£t—mj

* The c-c ratio g=2n3/2n3=1.

How to improve it?

* Use Shared Memory to reuse global memory
data (Hundreds of times faster)

 The bandwidth from host memory to device
memory is 8GB/s (PCl expressx2 GEN2)
— Higher bandwidth is for pinned memory (later)

* In G80, the bandwidth from device memory to
GPUis 86.4GB/s 0.9%384/8*2=86.4

— 900MHZ memory clock, 384 bit interface, 2 issues
(DDR RAM: double data rate)

Basic Idea

* Load A,B into shared memory and have
several threads use the local version
— Shared memory has limited size

— Suppose the size of shared memory can store 1
column and 1 row of A and B

— Elements of C can be stored in registers
e Memory read can be parallelized too. (how?)
— Recall the float3 Code

MMM on GPU v2

__global wvoid MatrixMulKernel (float* A,
float* B,float* C,int n) {
int tx = threadldx.x;

int ty = threadldx.y;
extern shared float SA[];
SA[ty*n+tk] = A[ty*n+t+k];

__syncthreads() ;

float Cvalue = 0;

for (int k = 0; k < n; ++k){
float Bval = Blk*n+tx];
Cvalue+=SA[ty*n+k] *Bval;

}

// Write to device memory;

Clty*nt+ttx] = Cvalue;

A
\ 4
A

v

The C-C ratio

* One block of threads compute a row of C
— Ais read n times from global memory: n?.
— B is read n times from global memory: n3.
— The c-c ratio q=2n3/(n3+n?) ~

2.
ft. +mt = ftc[1+ mtmj ft (1+ Et—j
ft. qt

* Another problem: the matrix size is limited by

— Number of threads per block
— The size of shared memory

Another try

* |f the matrix size is small enough, say 16x16,
then A and B can both be loaded into the
shared memory =2 n? memory access
— 16x16x4x3 =3K < 16K II[
— The c-c ratio is n/2

e Partition A, B, and C into

NxN blocks. Each block
submatrix is of size n/N.

Block matrix-matrix multiplication

e Partition A, B, and C into NxN blocks. Each
submatrix is of size n/N. Suppose M>3(n/N)?.

 Denote A[l, J] the |, J block submatrix of A.

forI=1:N%
for J = I:N % read C[I,J] into fast memory
for K= 1:N % read A[I K] and B[K,J] into fast memory
C[T,TI=C[I,T]+ A[LKI*B[K,JT]
end
end
end

The C-C ratio

I\/Iemory access counts.
— Read B N times: Nn?.

— Read A N time: Nn?.

— Write C 1 time: n?.

Total memory access is (2N +1)n? ~ 2Nn?.
The ratio g=2n3/(2Nn?) = n/N
Which N can maximize the performance?

Performance of G80 (8800GTX)

* Peak performance of G80 is 345.6GFLOPS
— 128 MP; each runs 1.35GHZ;

— One mult-and-add per cycle for floating point
operations (more on this later)

* Need two floating numbers (8 bytes) for one
mult-and-add=>»4 bytes for one operation

— For peak performance, need 4*345.6=1386GB/s

* Memory bandwidth of G80 is 86.4GB/s
— Need c-c ratio 1386/86.4 > 16.04

Homework

* Read chap3 and chap4 from UIUC’s class
— http://courses.ece.illinois.edu/ece498/al/Syllabus.html

* Implement matrix-matrix multiplication and using
memory padding and tiling

— See this webpage for reference

— http://heresy.spaces.live.com/blog/cns!E0070FBS8ECF9
015F!3435.entry

— Write different versions and compare their
performance to learn the effectiveness of each
techniques

http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry
http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry

