
CUDA Programming

Week 2. CUDA Memory



Outline

• Memory review

• Data alignment

• Global memory coalesced

• Memory Padding

• Tiling

• Homework assignment



Device memory

To host



Salient features of device memory

Memory Location Cached Access Scope Lifetime

Register On chip N R/W 1 thread Thread

Local RAM N R/W 1 thread Thread 

Shared On chip N R/W Threads in 
a block

Block

Global RAM N R/W All thread 
+ host

Host 
allocation

Constant RAM Y R All thread 
+ host

Host 
allocation

Texture RAM Y R All thread 
+ host

Host 
allocation



Size and speed

• Size
– Global and texture is limited by the size of RAM

– Local memory: limited 16 KB per thread

– Shared memory: limited 16KB

– Constant memory: 64 KB in total

– 8,192 (or 16,384) 32-bit registers per SM

• Speed: 
– Global, local, texture << constant << shared, 

register



Host-Device Data Transfers

• Device memory to host memory bandwidth
much lower than device memory to device 
bandwidth

– 4GB/s peak (PCI) vs. 76 GB/s peak (Tesla C870)

• Method 1: Group transfers

– One large transfer is much better than many 
small ones (memory coalescing)

• Method 2: Minimize transfers

– Increase computation-communication ratio (tiling)



DATA ALIGNMENT



Data alignment

• Device can read 4-byte, 8-byte, or 16-byte 
words from global memory into registers in a 
single instruction.

– The following code is in single instruction

• Reading mis-aligned 8-byte or 16-byte words 
produces incorrect results

__device__ type device[32];

type data = device[tid];



Data alignment

• A data of size 4-byte(8-byte, 16 byte) must 
aligned to 4-byte(8-byte, 16 byte).

– Built-in types, like float2 or float4, fulfill this 
requirement automatically.

– Structures need __align__(8) or __align__(16)

struct

__align__(8){

float a;

float b;

};

struct

__align__(16){

float a;

float b;

Float c;

};

struct

__align__(16) {

float a;

float b;

float c;

float d;

float e;

};

Two load 
instructions



Build-in data type

• The alignment requirement is automatically 
fulfilled for built-in types, like float2 or float4.

Data type Size Alignment

float2 8 byte 8

float3 12 byte 4

float4 16 byte 16



MEMORY COALESCING



Global memory coalescing

• Global memory bandwidth is used most 
efficiently when the simultaneous memory 
accesses by 16 threads 

• A contiguous region of global memory:

– 64 bytes - each thread reads a word: int, float, …

– 128 bytes - each thread reads a double-word: int2, 
float2, …

– 256 bytes – each thread reads a quad-word: int4, 
float4, …



Memory coalescing for cuda 1.1

• The global memory access by 16 threads is 
coalesced into one or two memory 
transactions if all 3 conditions are satisfied

1. Threads must access

• Either 4-byte words: one 64-byte transaction,

• Or 8-byte words: one 128-byte transaction,

• Or 16-byte words: two 128-byte transactions;

2. All 16 words must lie in the same segment

3. Threads must access words sequentially.



Coalesced Access (Cuda 1.0-1.1)



Uncoalesced Access (Cuda 1.0-1.1)

non-sequential float memory access, resulting in 16 memory transactions.

access with a misaligned starting address, resulting in 16 memory transactions.



Uncoalesced Access (Cuda 1.0-1.1)

• non-contiguous float 
memory access, 
resulting in 16 
memory transactions.



Uncoalesced Access (Cuda 1.0-1.1)

• non-coalesced float3 
memory access, 
resulting in 16
memory transactions.



Things changed

• In cuda 1.2 and later version, the restrictions 
are relaxed

– For Cuda 1.1 or lower versions, misaligned access 
pattern is split into 16 transactions

– For Cuda 1.2 or higher versions, misaligned access 
pattern, like the figure, 
only has in one 
transactions



Memory coalescing for cuda 1.2

• The global memory access by 16 threads is 
coalesced into a single memory transaction as 
soon as the words accessed by all threads lie 
in the same segment of size equal to:

– 32 bytes if all threads access 1-byte words,

– 64 bytes if all threads access 2-byte words,

– 128 bytes if all threads access 4-byte or 8-byte 
words.



Coalesced Access (Cuda 1.2 later)

• Random float memory access within a 64B 
segment, resulting in one memory transaction.



Coalesced Access (Cuda 1.2 later)

• misaligned float memory access, resulting in 
one transaction.



Coalesced Access (Cuda 1.2 later)

• misaligned float memory access, resulting in 
two transactions.



How important it is? 

• EX1: Let offset run from 1 to 32

__global__ void offsetCopy

(float *odata, 

float* idata,  

int offset) 

{ 

int xid = blockIdx.x*  

blockDim.x+  

threadIdx.x+ 

offset; 

odata[xid] = idata[xid]; 

} 



EX2, Strided Accesses

• stride changes from 1 to 18
__global__ void strideCopy(float 

*odata, float* 

idata, int stride){ 

int xid =(blockIdx.x* blockDim.x+  

threadIdx.x)*stride;

odata[xid]=idata[xid]; 

} 



Make memory access coalesced

1. Use a Structure of Arrays (SoA) instead of 
Array of Structures (AoS)

2. Use shared memory to achieve coalescing

– Example in the following slices



Example: float3 Code

__global__ void accessFloat3(float3 *d_in, 

float3 d_out){

int index = blockIdx.x * blockDim.x + 

threadIdx.x;

float3 a = d_in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d_out[index] = a;

}

• Read an array of float 3, add 2 to each element

• float3 is of 12 bytes, not 4, 8 or 16.



Coalesced Access: float3 Case

• Use shared memory to allow coalescing

– Need sizeof(float3)*(threads/block) bytes

– Each thread reads 3 scalar floats:

– Offsets: 0, (threads/block), 2*(threads/block)

– These is likely processed by other threads, so sync

• Processing

– Each thread retrieves its float3 from SMEM array

– Cast the SMEM pointer to (float3*)

– Use thread ID as index



__global__ void accessInt3Shared(float *g_in,float

*g_out){

int index = 3*blockIdx.x*blockDim.x+threadIdx.x;

__shared__ float s_data[256*3];

s_data[threadIdx.x] = g_in[index];

s_data[threadIdx.x+256] = g_in[index+256];

s_data[threadIdx.x+512] = g_in[index+512];

__syncthreads();

float3 a = ((float3*)s_data)[threadIdx.x];

a.x += 2;

a.y += 2;

a.z += 2;

((float3*)s_data)[threadIdx.x] = a;

__syncthreads();

g_out[index] = s_data[threadIdx.x];

g_out[index+256] = s_data[threadIdx.x+256];

g_out[index+512] = s_data[threadIdx.x+512];

}





Coalescing: Timing Results

• Experiment:

– Kernel: read a float, increment, write back

– 3M floats (12MB), Times averaged over 10K runs

• 12K blocks x 256 threads reading floats:

– 356μs – coalesced

– 3,494μs – permuted/misaligned thread access

• 4K blocks x 256 threads reading float3s:

– 3,302μs – float3 uncoalesced

– 359μs – float3 coalesced through shared memory



MEMORY PADDING



Common Access Pattern: 2D Array

• Each thread of index (tx,ty) accesses one 
element of a 2D array located at address 
BaseAddress of type type* and of width N
using the following address

BaseAddress + N*ty + tx

• How to ensure the memory access is coalesced?
– blockDim.x = 16x and N=16x

– Recall EX1 (offset) and EX2 (stride)



Memory padding

• We can control blockDim.x, but the array size 
is not always 16x

• Memory padding: create an array of 
width=16x, and fill the unused part by 0

• pitch(投擲,音高,間距): the leading dimension 
of an array A (called lda)

– Since C/C++ is row major, the leading dimension is 
the row-width (number of elements in a row)



CUDA supporting API

• Cuda provides functions to allocate memory 
and copy data for 2D array

• Similar functions also available for 3D array

cudaMallocPitch((void**)&devPtr, size_t* &pitch, 

size_t width*sizeof(type), //in bytes 

size_t height);

cudaMemcpy2D(void * dst, 

size_t dpitch,

const void * src,

size_t spitch,

size_t width,

size_t height,

enum cudaMemcpyKind kind)

http://developer.download.nvidia.com/compute/cuda/3_0-Beta1/toolkit/docs/online/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html


TILING



Computation/communication ratio

• Let f be the number of flops, m be number of 
memory access. Then q = f/m is the 
computation/communication ratio

• Let tc be the time per flops, tm be the time per 
memory access. The running time is

– tc improves 60% per year, tm improves 20% per year
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Some examples

• Vector addition: z = x+y

– f=n, m=3n, q = 1/3

• Matrix-vector multiplication: y=Ax

– f = 2n2, m = n2+2n, q = 2  

• Matrix-matrix multiplication: C= AB

– f = 2n3, m = 3n2, q = 2n/3

– Therefore, the larger n, the better utilization

– But, can we really achieve that



MMM on CPU

void MatrixMulOnHost(float* A, float* B, 

float* C, int n){   

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) {

double sum = 0;

for (int k = 0; k < n; ++k) {

double a = A[i * n + k];

double b = B[k * n + j];

sum += a * b;

}

C[i * n + j] = sum;

}

}



MMM on GPU
__global__ void MatrixMulKernel(float* A,float* 

B,float* C,int n){

// 2D Thread ID

int tx = threadIdx.x;    

int ty = threadIdx.y;

float Cvalue = 0;

for (int k = 0; k < n; ++k){ 

float Aelement = A[ty * n + k];

float Belement = B[k * n + tx];

Cvalue += Aelement * Belement;

}

// Write to device memory;

// each thread writes 1 

// element

C[ty * n + tx] = Cvalue;

}

A

B

C



The C-C ratio

• One thread computes an element

• A and B are read n times from global memory: 
2n3.

• The c-c ratio q=2n3/2n3=1.
A

B

C
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How to improve it?

• Use Shared Memory to reuse global memory 
data (Hundreds of times faster)

• The bandwidth from host memory to device 
memory is 8GB/s (PCI expressx2 GEN2) 

– Higher bandwidth is for pinned memory (later)

• In G80, the bandwidth from device memory to 
GPU is 86.4GB/s

– 900MHZ memory clock, 384 bit interface, 2 issues 
(DDR RAM: double data rate)

0.9*384/8*2=86.4



Basic Idea

• Load A,B into shared memory and have 
several threads use the local version

– Shared memory has limited size

– Suppose the size of shared memory can store 1 
column and 1 row of A and B

– Elements of C can be stored in registers

• Memory read can be parallelized too. (how?)

– Recall the float3 Code



MMM on GPU v2
__global__ void MatrixMulKernel(float* A,  

float* B,float* C,int n){

int tx = threadIdx.x;    

int ty = threadIdx.y;

extern __shared__ float SA[];

SA[ty*n+k] = A[ty*n+k];

__syncthreads();

float Cvalue = 0;

for (int k = 0; k < n; ++k){ 

float Bval = B[k*n+tx];

Cvalue+=SA[ty*n+k]*Bval;

}

// Write to device memory;

C[ty*n+tx] = Cvalue;

}

A

B

C



The C-C ratio

• One block of threads compute a row of C

– A is read n times from global memory: n2.

– B is read n times from global memory: n3.

– The c-c ratio q=2n3/(n3+n2) ~ 2.

• Another problem: the matrix size is limited by

– Number of threads per block 

– The size of shared memory
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Another try

• If the matrix size is small enough, say 16x16, 
then A and B can both be loaded into the 
shared memory  n2 memory access

– 16x16x4x3 =3K < 16K

– The c-c ratio is n/2

• Partition A, B, and C into 
N×N blocks.  Each block 
submatrix is of size n/N. 
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Block matrix-matrix multiplication

• Partition A, B, and C into N×N blocks. Each 
submatrix is of size n/N. Suppose M>3(n/N)2.

• Denote A[I, J] the I, J block submatrix of A. 

for I = 1:N %
for J = 1:N % read C[I,J] into fast memory

for K = 1:N % read A[I,K] and B[K,J] into fast memory
C[I,J]=C[I,J] + A[I,K]*B[K,J]

end
end

end



The C-C ratio

• Memory access counts.

– Read B N times: Nn2.

– Read A N time: Nn2.

– Write C 1 time: n2.

• Total memory access is (2N +1)n2 ~ 2Nn2.

• The ratio q=2n3/(2Nn2) = n/N

• Which N can maximize the performance?



Performance of G80 (8800GTX)

• Peak performance of G80 is 345.6GFLOPS

– 128 MP; each runs 1.35GHZ; 

– One mult-and-add per cycle for floating point 
operations (more on this later)

• Need two floating numbers (8 bytes) for one 
mult-and-add4 bytes for one operation

– For peak performance, need 4*345.6=1386GB/s 

• Memory bandwidth of G80 is 86.4GB/s

– Need c-c ratio 1386/86.4 > 16.04 



Homework

• Read chap3 and chap4 from UIUC’s class

– http://courses.ece.illinois.edu/ece498/al/Syllabus.html

• Implement matrix-matrix multiplication and using 
memory padding  and tiling

– See this webpage for reference

– http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9
015F!3435.entry

– Write different versions and compare their 
performance to learn the effectiveness of each 
techniques

http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry
http://heresy.spaces.live.com/blog/cns!E0070FB8ECF9015F!3435.entry

