CS5321 Numerical Optimization

19 Interior-Point Methods for Nonlinear Programming(Barrier Methods)

Problem formulation

$$\min_{x} f(x)$$
s.t. $c_{E}(x) = 0$

$$c_{I}(x) - s = 0$$

$$s \ge 0$$

- $\succ c_E$ is a vector of c_i , $i \in \mathbf{E}$
- $\succ c_I$ is a vector of c_i , $i \in \mathbf{I}$
- > s is the slack variables
- Add barrier functions for inequality constraints.

$$egin{array}{ll} \min_{x} & f(x) - \mu \sum_{i=1}^{m} \ln s_i \\ ext{s.t.} & c_E(x) = 0 \\ & c_I(x) - s = 0 \end{array}$$

μ is the barrier parameter, which may be reduced iteratively.

KKT conditions

• The Lagrangian of the original problem is

$$L(x, s, y, z) = f(x) - \mu \sum_{i=1}^{N} \ln s_i - y^T c_E(x) - z^T (c_I(x) - s)$$

- y and z are the Lagrangian multipliers.
- Let A_E and A_I denote the Jacobian of c_E and c_I .
- The KKT condition of the barrier function is

$$abla f(x) - A_E^T(x)y - A_I^T(x)z = 0
Sz - \mu e = 0
c_E(x) = 0
c_I(x) - s = 0$$

- Solve KKT conditions by the Newton's method
 - The primal-dual system

$$\begin{bmatrix} \nabla_{xx}^{2}L & 0 & -A_{E}^{T} & -A_{I}^{T} \\ 0 & Z & 0 & S \\ A_{E} & 0 & 0 & 0 \\ A_{I} & -I & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{s} \\ p_{y} \\ p_{z} \end{bmatrix} = - \begin{bmatrix} \nabla f - A_{E}^{T}y - A_{I}^{T}z \\ Sz - \mu e \\ c_{E} \\ c_{I} - s \end{bmatrix}$$

- Update $(x, s, y, z) += (\alpha_x p_x, \alpha_s p_s, \alpha_y p_y, \alpha_z p_z)$ and μ_{k+1}
 - The fraction to the boundary rule: for $\tau \in (0,1)$

$$\alpha_s = \max\{\alpha \in (0,1] : s + \alpha p_s \ge (1-\tau)s\}$$

$$\alpha_z = \max\{\alpha \in (0,1] : z + \alpha p_z \ge (1-\tau)z\}$$

Solving the primal-dual system

• Let $\Sigma = S^{-1}Z$ and rewrite the primal dual system as

$$\begin{bmatrix} \nabla_{xx}^{2}L & 0 & A_{E}^{T} & A_{I}^{T} \\ 0 & \Sigma & 0 & -I \\ A_{E} & 0 & 0 & 0 \\ A_{I} & -I & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{s} \\ -p_{y} \\ -p_{z} \end{bmatrix} = - \begin{bmatrix} \nabla f - A_{E}^{T}y - A_{I}^{T}z \\ z - \mu S^{-1}e \\ c_{E} \\ c_{I} - s \end{bmatrix}$$

- The matrix become symmetric.
- Eliminate p_s and reform the problem

$$\begin{bmatrix} \nabla_{xx}^{2}L & A_{E}^{T} & A_{I}^{T} \\ A_{E} & 0 & 0 \\ A_{I} & 0 & -\Sigma^{-1} \end{bmatrix} \begin{bmatrix} p_{x} \\ -p_{y} \\ -p_{z} \end{bmatrix} = - \begin{bmatrix} \nabla f - A_{E}^{T}y - A_{I}^{T}z \\ c_{E} \\ c_{I} - \mu Z^{-1}e \end{bmatrix}$$

Avoid singularity



- Singularity may caused by Σ (some elements goes to ∞) or ill-conditionness of $\nabla_{rr}^2 f$ and $A_{\mathbf{I}}$.
 - 1. Use projected Hessian and modified Σ

$$\left[egin{array}{ccccc} G & 0 & A_E^T & A_I^T \ 0 & T & 0 & -I \ A_E & 0 & 0 & 0 \ A_I & -I & 0 & 0 \end{array}
ight]$$

2. Add diagonal shift
$$\begin{bmatrix} \nabla^2_{xx}L + \delta I & 0 & A_E^T & A_I^T \\ 0 & \Sigma & 0 & -I \\ A_E & 0 & -\gamma I & 0 \\ A_I & -I & 0 & 0 \end{bmatrix}$$

- Barrier parameters $\{\mu_k\}$ need converge to zero.
- 1. Static method $\mu_{k+1} = \sigma_k \mu_k$ for $\sigma_k \in (0,1)$
- 2. Adaptive methods
 - a. In the linear programming, $\mu_{k+1} = \sigma \frac{s_k^T z_k}{m}$ (chap 14)
- Use merit function to decide whether a step is productive and should be accepted. (chap 18)

$$\phi(x,s) = f(x) - \mu \sum_{i=1}^{m} \ln s_i + \nu ||c_E|| + \nu ||c_I - s||$$

- Two differences from the line search approach
 - 1. Solve primal (x,s) and dual problem (y, z) alternately
 - 2. Use scaling S^{-1} on p_s .
- The primal problem

$$\min_{\substack{p_x,p_s \\ \text{subject to}}} \nabla f^T p_x + \frac{1}{2} p_x^T \nabla_{xx}^2 L p_x - \mu e^T S^{-1} p_s + \frac{1}{2} p_s^T \Sigma p_s$$
 subject to
$$A_E(x) p_x + c_E(x) = r_E$$

$$A_I(x) p_x - p_s + (c_I(x) - s) = r_I$$

$$||(p_x, S^{-1} p_s)|| \leq \Delta,$$

$$p_s \geq -\tau s.$$

Solving the dual problem

- Define $\hat{A} = \begin{bmatrix} A_E & 0 \\ A_I & -S \end{bmatrix}$. The dual problem is to solve $\hat{A}^T \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} \nabla f(x) \\ -\mu e \end{bmatrix}$
- Using the least-square method

$$\begin{bmatrix} y \\ z \end{bmatrix} = (\hat{A}\hat{A}^T)^{-1}\hat{A} \begin{bmatrix} \nabla f(x) \\ -\mu e \end{bmatrix}$$

• The solution cannot guarantee z to be positive. \Rightarrow replaced by a small positive number if $z_i \le 0$

$$z_i \to \min(10^{-3}, \mu/s_i)$$

• Let $p_s' = S^{-1}p_s$. The problem can be rewritten as

$$\min_{p_x, p_s} \quad \nabla f^T p_x + \frac{1}{2} p_x^T \nabla_{xx}^2 L p_x - \mu e^T p_s' + \frac{1}{2} p_s'^T S \Sigma S p_s' \\
\text{s.t.} \quad A_E(x) p_x + c_E(x) = r_E \\
A_I(x) p_x - S p_s' + (c_I(x) - s) = r_I \\
\|(p_x, p_s')\| \le \Delta, \\
p_s' \ge -\tau.$$

• Parameter r_E and r_I can be computed by solving

$$r_E = A_E(x)v_x^L + c_E(x), r_I = A_I(x)v_x^I - Sv_s + c_I(x) - s$$

$$\min_v ||r_E||_2^2 + ||r_I||_2^2$$

s.t.
$$||(v_x, v_s)|| \le 0.8\Delta, v_s \ge V(\tau/2)e$$

Convergence theory

• Theorem 19.1: Let $\{x_k\}$ be the iterative points of the basic algorithm and $\{\mu_k\} \rightarrow 0$. Suppose f and c are continuously differentiable. The all limit points x^* of $\{x_k\}$ are feasible. Moreover, if any x^* satisfies LICQ, the KKT conditions are satisfied.