

What is a system? • A set of interacting of interdependent entities forming an integrated whole. - From Wikipedia • Five components - Hardware Procedure Software System - Software Data Hardware Data - Procedure - User 2009/11/4 CS135602 Introduction to Information Engineering

Outline

- Components and functions
- · Process management
- Handling competition for resources
- Security

2009/11/4

CS135602 Introduction to Information Engineering

2009/11/4

CS135602 Introduction to Information Engineering

Components and Functions

Shell, kernel, file manager, device drivers, memory manager, bootstrapping, scheduler, dispatcher

O Components of OS

- For **user**: shell, privilege control (security)
- For data: file manager
- For **hardware**: device manager, memory manager, and boot manager
- For software:
 - Where to store: file manger, registry
 - How to execute: scheduler, process manager

2009/11/4

CS135602 Introduction to Information Engineering

7

How about procedure?

- OS needs to define a set of rules or working flows for users and hardware/ software developers.
 - For example, you need to double click an icon to open a program or a file.
 - Design a simple yet useful procedure for a complicated system is not an easy job.
 - This is for books like "How to use computers" to talk about?

2009/11/4

CS135602 Introduction to Information Engineering

Shell

- Shell: an interface between users and the operating system
 - Text based
 - Graphical user interface (GUI)
 - Windows, icons, menus, pointers (WIMP)
 - Window manager

User User

Shell
User User

11

Figure 3.4 The shell as an interface between users and the operating system

2009/11/4

CS135602 Introduction to Information Engineering

Device manager

- Communicate with the controllers/devices
 - Drive the corresponding peripheral devices
 - Each device driver is uniquely designed for its particular type of device

• File manager

- **File manager**: organizes and maintains the records of files in mass storages
- Hierarchical structure
 - Directory, or folder, directory path
- File descriptor
 - File name, extension, size, updated date, permissions, attributes, ...
- File operations
 - Copy, paste, creation, open...

2009/11/4

CS135602 Introduction to Information Engineering

10

Search8

Cache

Updater

Memory manager

- · Coordinates the use of memory
- Virtual memory:
 - Employ the physical memory and disk space
 - Create the *illusion* of a larger memory space
 - To facilitate the mapping, memory is grouped into pages (the basic memory unit).
 - Paging: shuffle pages between main memory and disk.

2009/11/4

CS135602 Introduction to Information Engineering

Example of virtual memory • There 8 pages; each is of 4KB. - Main memory is of size 16KB. - Programs use virtual Page 0 Page 1 address to access Page 2 data and code Page 3 - OS does the mapping Page 4 and paging Page 5 Main memory Page 6 Page 7 Disk Virtual address 2009/11/4 CS135602 Introduction to Information Engineering 13

• Get it started: bootstrapping

- Loader: a special program places machine programs to main memory for execution
 - Think about the problem 2 of homework 3.
 - Usually part of the OS's scheduler
- Who loads the OS to memory?
 - A "special memory" that contains a "program" to load the OS after computer is powered on.

 Read-only memory (ROM)

 Bootstrap

2009/11/4

CS135602 Introduction to Information Engineering

14

• The booting process

The program counter is initiated with a particular address in ROM where the bootstrap is stored

Step 1: Machine starts by executing the bootstrap program already in memory. Operating system is stored in mass storage.

Step 2: Bootstrap program directs the transfer of the operating system into main memory and then transfers control to it.

15

2009/11/4

CS135602 Introduction to Information Engineering

2009/11/4

CS135602 Introduction to Information Engineering

16

BIOS and firmware

- The bootstrap program and other basic input/output functions are contained in a special ROM, called BIOS (basic input/output system)
- A program stored in ROM is called firmware.
 - Hardware or software?

Process Management

History, today, and future

2009/11/4

CS135602 Introduction to Information Engineering

17

19

Evolution of shared computing

- Batch processing
- Interactive processing: requires real-time processing
- Time-sharing/Multitasking: implemented by Multiprogramming
- New challenges: multicore processors, and small devices

2009/11/4

CS135602 Introduction to Information Engineering

• A program vs. a process

- Program: a set of instructions
- Process: the activity of executing a program
- A program can be run multiple times, each instance/activity called a process
- Interprocess communication
 - The communication between processes from running one or more programs

2009/11/4

CS135602 Introduction to Information Engineering

18

O Batch processing

Figure 3.6 Time-sharing between process A and process B 2009/11/4 CS135602 Introduction to Information Engineering

Timeslice

Advancing

O Context (process state)

- Snapshot of the current status of a process
 - A process identifier, or PID
 - Register values, Program Counter value
 - The memory space, I/O, files for the process
 - State of the process.
 - Ready: ready for execution.
 - Waiting: waiting for some I/O.
 - Complete: finished process.

2009/11/4

CS135602 Introduction to Information Engineering

23

O Scheduler

Time-sharing/multitasking

Process A

Timeslice

Process B

Process A

Timeslice

- Determines which processes should be considered for execution based on some priorities or concerns
 - Using process table for administration
- Process table
 - Ready or waiting
 - Priority
 - Non-scheduling information: memory pages, etc.

2009/11/4

CS135602 Introduction to Information Engineering

24

O Dispatcher

- · Gives time slices to a process that is ready
- Executes a context switch when the running process's time slice is over
 - Time slice: a time segment for each execution
 - Interrupt: the signal generated by a hardware timer to indicate the end of a time slice.
 - The Interrupt handler (part of dispatcher) starts after the interrupt to perform context switch

2009/11/4

CS135602 Introduction to Information Engineering

25

O Thread

- A task exist within a process
 that allows multiple independent
 instance to be executed concurrently.
 - Multiple threads share resources such as memory, program code, ...
 - Each thread has its own program counter, registers, and stack (local memory).
- The context switch of threads is much faster than that of processes.

2009/11/4

CS135602 Introduction to Information Engineering

27

Ocontext switch (process switch)

- 1. Get an interrupt from timer
- 2. Go to the interrupt handler
 - a. Save the context of process A
 - b. Find a process ready to run (Assume that is process B)
 - c. Load the context of process B
- 3. Start (continue) process B

26

2009/11/4

CS135602 Introduction to Information Engineering

Exercises

- Suppose an OS allocates time slices in 10 millisecond units and the time required for a context switch is negligible. How many processes can obtain a time slice is one second?
- If it takes one microsecond to perform a context switch and processes use only half of their allotted 10 millisecond time slices, what percent of a CPUs time is spent performing context switches rather than executing processes?

2009/11/4

CS135602 Introduction to Information Engineering

New challenges

- Multicore processor
 - How to assign tasks to processors?
 - Load balance problem
 - How to use processors to handle one task?
 - Parallelization, scaling problem
- Embedded systems, small devices
 - Turkey system: store all programs and data in a persistent memory
 - No BISO and program loader

2009/11/4

CS135602 Introduction to Information Engineering

20

Resources

Handling Competition for

2009/11/4

CS135602 Introduction to Information Engineering

O Competition for resources

- What are resources?
 - CPU, memory, files, peripheral devices, ...
- In a multitasking system, resources are shared by processes
- Some resources should not be employed by more than one process simultaneously
 - E.g., Printer

2009/11/4

CS135602 Introduction to Information Engineering

31

Handling competitions

- Define critical regions
 - Critical Region: A group of instructions that should be executed by only one process at a time
 - Mutual exclusion: Requirement for proper implementation of a critical region

2009/11/4

CS135602 Introduction to Information Engineering

32

First algorithm

- Use a flag (a global memory address)
 - flag=1: the critical region is occupied
 - flag=0: no process is in the critical region
- Problem:

- Both processes get into the critical region

2009/11/4 CS135602 Introduction to Information Engineering

Another problem: deadlock

- Example:
 - A is in critical region 1, and waits to enter critical region 2
 - B is in critical region 2, and waits to enter critical region 1

Solutions

- Testing&setting the flag must be completed w/o interruption (atomic)
- Use disable_Interrupt() to prevent context switch during the flag test and set process.

Diable_Interrupt(); if (flag == 0) { flag = 1; Enable_Interrupt(); /*critical region*/ } Enable_Interrupt();

- 2. A machine instruction called "test-and-set" which cannot be interrupted
- Semaphore: a properly implemented flag

2009/11/4

CS135602 Introduction to Information Engineering

Conditions for deadlock

- 1. Competition for non-sharable resources
- 2. Resources requested on a partial basis
- 3. An allocated resource can not be forcibly retrieved

Remove any one of the conditions can resolve the deadlock.

2009/11/4

CS135602 Introduction to Information Engineering

O Solutions

Which condition is removed?

- 1. Kill one of the process
- 2. Process need to request all the required resources at one time
- 3. Spooling
 - For example, stores the data to be printed and waits the printer available
- 4. Divide a file into pieces so that it can be altered by different processes

37

39

2009/11/4 CS135602 Introduction to Information Engineering

Security

CS135602 Introduction to Information Engineering

Exercises

- There is a bridge that only allows one car to pass. When two cars meet in middle, it causes "deadlock". The following solutions remove which conditions
 - 1. Do not let a car onto the bridge until the bridge is empty.
 - 2. If cars meet, make one of them back up.
 - 3. Add a second lane to the bridge.
- What's the drawback of solution 1?

2009/11/4

CS135602 Introduction to Information Engineering

38

Security

- Attacks
 - Malware
 - Spyware and phishing
 - Adware and spam
 - Abnormal behaviors

- Defenses
 - User management
 - Privilege control
 - Protections
 - Antivirus software
 - Auditing software
 - Firewall, spam filter
 - Encryption

2009/11/4

CS135602 Introduction to Information Engineering 40

2009/11/4

Malware

- Infect programs/computers, erase data, slowdown performance...
- Types

- -Virus: attached to an existing program
- -Worm: a stand alone program
- Trojan horse: disguised as valid files or programs

2009/11/4

CS135602 Introduction to Information Engineering

41

2009/11/4

CS135602 Introduction to Information Engineering

entity in an electronic communication

Spyware and phishing

• Spyware: collects information about users

- Keylogger: log the keys struck on a keyboard

- Login sniffing: simulates the login process to

- Network sniffing: intercept network messages

get valid user name and password.

Phishing: acquires information by

masquerading as a trustworthy

without their knowledge.

. . .

Adware and spam

- Adware: automatically plays, displays, or downloads advertisements to a computer after the software is installed on it or while the application is being used.
- Spam: sends unsolicited bulk messages indiscriminately.
 - Email spam

2009/11/4 CS135602 Introduction to Information Engineering

12

Abnormal behaviors

- Dictionary attack: trying passwords derived from a list of words in a dictionary.
- Denial of service attack: overloading a computer (server) with messages to make a computer resource unavailable to its intended users.
- Spoofing attack: masquerading as a party other than one's self

2009/11/4

CS135602 Introduction to Information Engineering

O User management

- To protect the computer's resource from access by unauthorized personnel.
- User authentication process:
 - Username, password, fingerprint, ...
- Super user / administrator / root
 - A kind of user having higher privilege to control machines and operating system.

2009/11/4

CS135602 Introduction to Information Engineering

. . .

O Protections

- Antivirus software: detecting and removing the presence of known viruses and other infections.
- Auditing software: detecting and preventing abnormal situations
- **Firewall**: filtering messages passing through computers.
 - **Spam filter**: firewall for email spam

2009/11/4

CS135602 Introduction to Information Engineering

47

Privilege control

- To prevent malicious programs to execute dangerous instructions.
- Privilege levels:
 - Nonprivilege mode: only "safe" instructions
 - For example, to access some part of memory.
 - Privilege mode: all kinds of instructions
 - Those instructions that can be only executed in the privilege mode are called **privilege instructions**.

2009/11/4

CS135602 Introduction to Information Engineering

46

Related courses

- Operation system
 - 作業系統,計算機系統管理,平行程式
- Security
 - 計算機系統管理,密碼與網路安全概論

References

- http://www.wikipedia.org/
- Textbook chap3, sec 4.5 (security)

2009/11/4

CS135602 Introduction to Information Engineering