
Data Manipulation

10/7/2009

Che-Rung Lee

2009/10/7 1CS135602 Introduction to Information Engineering

What is a computer?

• Monitor, case, keyboard, mouse, speaker,

scanner, webcam, printer, -

What’s inside?

2009/10/7 2CS135602 Introduction to Information Engineering

Inside the case

• CPU, motherboard, adaptors, hard disk,

memory, CDROM, -

We are going to talk about those.

2009/10/7 3CS135602 Introduction to Information Engineering

Central Processing Unit (CPU)

• An electronic circuit that can execute

computer programs

– Intel i7

– AMD K10

– IBM Cell

– ARM Acorn

– Sun SPARC

• To understand CPU, we need to know what

computer programs are.

2009/10/7 4CS135602 Introduction to Information Engineering

Outline

• Store program concept

• Machine language

• Program execution

• Peripheral devices

• Parallel architectures

2009/10/7 5CS135602 Introduction to Information Engineering

Stored Program Concept

"The final major step in the development of
the general purpose electronic computer
was the idea of a stored program..."

Brian Randell

2009/10/7 6CS135602 Introduction to Information Engineering

What’re the differences?

TV: you can watch

different channels.

2009/10/7 CS135602 Introduction to Information Engineering 7

麵包機: you can

make different food.

Computer: you can -

Swiss knife: you can use

different tools

Magic box

• You can add more functions to it. How?

– Program is like data to be input to computers.

• It can perform multiple functions at a time

– We will talk about this in the OS lesson.

Store program concept

• Program: a sequence of instructions

• Store program concept: a program can be

encoded as bit patterns and stored in main

memory. From there, the CPU can extract

the instructions and execute them.

• Advantage: programmable

– We can use a single machine to perform

different functions.

2009/10/7 9CS135602 Introduction to Information Engineering

Problems

• How to convert instructions to operations?

– This is like Harry Porter’s spell.

• There should be a control unit.

– To control which function to perform.

– To control which data to be operated.

– How can the control unit understand the

instructions?

• What function units should be included?

– CD players, game console, calculators, -?
2009/10/7 10CS135602 Introduction to Information Engineering

Outline of the magic box

2009/10/7 CS135602 Introduction to Information Engineering 11

Storage unit for

instructions and

data

Processing

unit

BeltControl

unit

von Neumann architecture

Figure 2.1 CPU and main memory connected via a bus

Processing tools

Small but

fast

temporary

storage

Large

temporary

storage for

data and

instructions

2009/10/7 12CS135602 Introduction to Information Engineering

general purpose electronic computer

Machine Language

What to do

+

Specified information

2009/10/7 13CS135602 Introduction to Information Engineering

Computer programs

Assembly
Language Program

Compiler

Machine Language
Program

Assembler
0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Control Signal
Specification

Machine
Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

High Level
Language Program

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

You are learning

it in CS1355

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

You will

learn it in

CS2410

We are going to talk about those.

2009/10/7 14CS135602 Introduction to Information Engineering

This will be taught in CS4100

Example: a = b + c

2009/10/7 15CS135602 Introduction to Information Engineering

1

2

1+2

3

Represented by instructions

2009/10/7 CS135602 Introduction to Information Engineering 16

Instruction format

• Store the data in register 5 to memory

cell at address A7

2009/10/7 17CS135602 Introduction to Information Engineering

Op-code: Specifies which

operation to execute

Operand: Gives more

detailed information about

the operation

Another example

• JUMP to instruction at address 58H if the

content of register 2 is the same as that of

register 0

2009/10/7 18CS135602 Introduction to Information Engineering

The instruction repertoire

• Which instructions should be included?

• For example, swapping v[k] and v[k+1]

Reduced Instruction Set

Computing (RISC)

swp 0($2), 4($2)

Create a new instruction, called

swp, which swaps data in two

memory addresses.

Complex Instruction Set

Computing (CISC)

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Using load and store instructions

2009/10/7 19CS135602 Introduction to Information Engineering

Instruction types

• Data Transfer

– Copy data between CPU and main memory

– E.g., LOAD, STORE, device I/O,

• Control

– Direct the execution of the program

– E.g., JUMP, BRANCH, JNE (conditional jump),

• Arithmetic/Logic

– Use existing data values to compute a new value

– E.g., AND, OR, XOR, SHIFT, ROTATE, etc.

2009/10/7 20CS135602 Introduction to Information Engineering

Instruction types

2009/10/7 CS135602 Introduction to Information Engineering 21

Data transfer

Control

Arithmetic/Logic

Data transfer

Data transfer

Program Execution

2009/10/7 22CS135602 Introduction to Information Engineering

Program execution cycle

2009/10/7 23CS135602 Introduction to Information Engineering

How to make a program “run”?

Figure 2.10 The program from Figure 2.7 stored in main memory

2009/10/7 24CS135602 Introduction to Information Engineering

Instruction fetch

Figure 2.11 Performing the fetch step of the machine cycle

2009/10/7 25CS135602 Introduction to Information Engineering

Instruction decode

• How to map opcodes to desired circuits on

a CPU?

• For example:

– 00b: add

– 01b: or

– 10b: jump

– 11b: and

2009/10/7 26CS135602 Introduction to Information Engineering

Interpretation of operand

• The interpretation of operand depends on

the op-code

Opcode Operand Description

1 4 A 3
Load the content at address A3

to register 4

2 4 A 3 Load value “A3” to register 4

4 0 A 3
Move the content of register A

to register 3

2009/10/7 27CS135602 Introduction to Information Engineering

Instruction execution

• Uses logic circuits

• Data transfer: load, store, -

– Logic circuit for registers (Ex: flip-flops)

• Control: jump, jump-equal, -

– Change the value of program counter (PC)

– Comparison logic circuit

• Arithmetic/Logic: add, and, shift, -

– Again, logic circuits (adder, as we have seen.)

2009/10/7 28CS135602 Introduction to Information Engineering

Flip-flops

• A logic circuit that can store one bit.

– One input is used to set value 1

– One input is used to set value 0

– While both input lines

are 0, the most recently

stored value is preserved

2009/10/7 29CS135602 Introduction to Information Engineering

Flip-flops continue

With this, we can set and

store value in a register

2009/10/7 30CS135602 Introduction to Information Engineering

Example of jump-equal

• B258: JUMP to instruction at address 58H

if the content of register 2 is the same as

that of register 0

Register 0 Register 2

:

:

XOR

OR NOT

Program

counter

set

58H=01011000

2009/10/7 31CS135602 Introduction to Information Engineering

Input XOR

0 0 0

0 1 1

1 0 1

1 1 0

In case you forgot

what XOR is

Exercises

Suppose PC=B0

1. What is in register 3 after

the first instruction?

2. What is the memory cell

B8 when the program

halts?

Address Contents

B0 13

B1 B8

B2 A3

B3 02

B4 33

B5 B8

B6 C0

B7 00

B8 0F

Arithmetic/Logic Operations

2009/10/7 33CS135602 Introduction to Information Engineering

Arithmetic/Logic operations

• Arithmetic: add, subtract, multiply, divide

– Precise action depends on how the values are

encoded (two’s complement vs. floating-point)

• Shift

– circular shift (Rotate), logical shift, arithmetic

shift

• Logic: AND, OR, XOR, NOT

– Masking

2009/10/7 34CS135602 Introduction to Information Engineering

One bit full adder

2009/10/7 35CS135602 Introduction to Information Engineering

4 bit parallel adder

2009/10/7 36CS135602 Introduction to Information Engineering

Rotate operation

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right
2009/10/7 37CS135602 Introduction to Information Engineering

Shift operation

• Circular shift (rotation)

• Logical shift

– Filling the hole with bit 0

– Original: 00000101b � 5d

– After 1 left shifting: 00001010b � 10d

– After 2 left shifting: 00010100b � 20d

• Arithmetic shift

– Shifts that leaves the sign bit unchanged

2009/10/7 38CS135602 Introduction to Information Engineering

Masking

• AND, OR, XOR can be used for masking

• Example: bit operations on 10101010b

– Set the 4th bit to 0

– Set the 3rd bit to 1

– Invert the 3rd and the 4th bit

10101010

AND 11110111

10100010

10101010

OR 00000100

10101110

10101010

XOR 00001100

10100110

Mask

2009/10/7 39CS135602 Introduction to Information Engineering

Put everything together

Z
N

register

Memory

PCIR

Controller ALU

clock

Control
signal

Control Datapath Memory

2009/10/7 40CS135602 Introduction to Information Engineering

Exercises

• Design a mask to isolate the middle four
bits of a byte (set others = 0).

• Encode each of the following commands

– ROTATE the contents of register 7 to the
right 5 bit positions

– ADD the contents of registers 5 and 6 as
thought they were values in floating-point
notation and leave the result in register 4

– AND the contents of registers 5 and 6, leaving
the result in register 4.

Peripheral Devices

2009/10/7 42CS135602 Introduction to Information Engineering

Connecting to other devices

• Outside the case

– Port: The point at which a device connects to

a computer

2009/10/7 43CS135602 Introduction to Information Engineering

Inside the case

2009/10/7 44CS135602 Introduction to Information Engineering

Device controller

• An intermediary apparatus that handles

communication between the computer

(CPU/memory) and a device.

• Two types of controllers

– Specialized controllers

• Network card, graphics card, -

– General purpose controllers

• USB, FireWire, -

2009/10/7 45CS135602 Introduction to Information Engineering

Device addressing

• Memory-mapped I/O:

– CPU communicates with peripheral devices

as though they were memory cells

– Use load and store to access device data

• Dedicated I/O instructions for devices

2009/10/7 46CS135602 Introduction to Information Engineering

Direct memory access (DMA)

• DMA is a mechanism for devices to access

memory without occupying CPU.

• At the same time, CPU can execute “other

process” until the I/O is finished.

– Better system throughput

2009/10/7 47CS135602 Introduction to Information Engineering

Communication type

• Parallel Communication:

– Several communication paths transfer bits

simultaneously.

– Printer, computer bus

• Serial Communication:

– Bits are transferred one after the other over a

single communication path.

– USB, FireWire

2009/10/7 48CS135602 Introduction to Information Engineering

Exercises

• Suppose the machine use memory I/O

and the memory address B5 is the location

within the printer port to which data to be

printed. If register 7 contains the ASCII

code for the letter A, what instruction can

make letter A to be printed?

• If a printer can only print 128 characters

per second, and has local buffer of 256KB,

how fast the data rate (bps) can be?

Parallel Architectures

2009/10/7 50CS135602 Introduction to Information Engineering

Pipeline

• Program execution is divided into three

stages: fetch, decode, execute

– Suppose each stage takes 3 clock cycles.

– How many clock

cycles are needed

to execute 50

instructions?

2009/10/7 51CS135602 Introduction to Information Engineering

Pipeline

• Since the hardware used in each stage is

separated, CPU can overlap the stages

• The more stages, the better throughput ?

– The Pentium 4 had a 35-stage pipeline.

Fetch

instruction 1

Decode

instruction 1

Execute

instruction 1

Fetch

instruction 2

Decode

instruction 2

Execute

instruction 2

Fetch

instruction 3

Decode

instruction 3

Execute

instruction 3

2009/10/7 52CS135602 Introduction to Information Engineering

Fetch

instruction 4

Decode

instruction 4

Fetch

instruction 5

Parallel architectures

• Bit-level parallelism:

– 1 bit adder vs. 4 bit adder

• Instruction-level parallelism

– Pipeline: overlap instruction execution stages

• IO/computation parallelism

– DMA: overlap communication/computation

• Multiprocessor parallelization

– Cluster, multi-core processors, GPU

2009/10/7 53CS135602 Introduction to Information Engineering

Flynn's taxonomy

• Based on the number of concurrent

instruction and data streams available in

the architecture (Michael J. Flynn, 1966)

– SISD (Single-instruction, single-data stream)

• No parallel processing

– MIMD (Multiple-instruction, multiple data stream)

• Different programs, different data

– SIMD: (Single instruction, multiple data stream)

• Same program, different data

2009/10/7 54CS135602 Introduction to Information Engineering

By memory location

• Distributed memory system

– Multiple processors that

communicate through a

computer network.

• Shared memory system

– Multiple processors that

communicate through a

shared memory space.

• Hybrid system

2009/10/7 55CS135602 Introduction to Information Engineering

Speedup

• Amdahl’s law

– Suppose there are f% of tasks cannot be

parallelized, the best speedup by n

processors is

Supercomputers

• Hundred thousands of processors

interconnected via special designed

network

– Top1: Roadrunner

– http://www.top500.org/

2009/10/7 57CS135602 Introduction to Information Engineering

Multi-core processor

• A processor composed of two or more

independent cores (or CPUs).

• Advantages

– Performance improvement

– Low power consumption

• Disadvantages

– Operating system support

– Software support

We will talk those

problems later

2009/10/7 58CS135602 Introduction to Information Engineering

Graphics processing unit (GPU)

• A specialized processor designed for 3D

graphics rendering

• Modern GPU has over thousand cores,

which can be used for general purpose

computation

2009/10/7 59CS135602 Introduction to Information Engineering

CPU GPU

Exercises

• Suppose instructions can be fully

overlapped in a 3 stages pipeline CPU,

and each stage takes 3 clock cycles,

how many clock cycles are needed to

execute 500 instructions? How if there

are 5 stages?

• What is the best speedup for 10

processors if there are 20% of tasks can

be parallelized? How about 60%?

Related courses

• Store program concept, peripheral devices

– 計算機結構，硬體實驗，微算機系統，邏輯設計，嵌入
式系統概論

• Parallel Architectures

References
• http://www.top500.org/ (supercomputer)

• https://computing.llnl.gov/tutorials/parallel_comp/

• www.cs.nthu.edu.tw/~ychung/slides/para_programming/slides1.pdf

• Textbook chap 2
2009/10/7 61CS135602 Introduction to Information Engineering

Opcode Operand Description

1 RXY LOAD the register R with the bit pattern found in the

memory cell whose address is XY.

Example: I4A3 would cause the contents of the memory

cell located at address A3 to be placed in register 4.

2 RXY LOAD the register R with the bit pattern XY.

Example: 20A3 would cause the value A3 to be placed in

register 0.

3 RST STORE the bit pattern found in register R in the memory

cell whose address is XY.

Example: 35B1 would cause the contents of register 5 to

be placed in the memory cell whose address is B1.

4 ORS MOVE the bit pattern found in register R to register S.

Example: 40A4 would cause the contents of register A to

be copied into register 4.

5 RST ADD the bit patterns in registers S and T as though they

were two's complement representations and leave the

result in register R.

Example: 5726 would cause the binary values in registers

2 and 6 to be added and the sum placed in register 7.

Opcode Operand Description

6 RST ADD the bit patterns in registers S and T as though they

represented values in floating point notation and leave the

floating-point result in register R.

Example: 634E would cause the values in registers 4 and

E to be added as floating-point values and the result to be

placed in register 3.

7 RST OR the bit patterns in registers S and T and place the

result in register R.

Example: 7CB4 would cause the result of ORing the

contents of registers Band 4 to be placed in register C.

8 RST AND the bit patterns in registers S and T and place the

result in register R.

Example: 8045 would cause the result of ANDing the

contents of registers 4 and 5 to be placed in register 0.

9 RST EXCLUSIVE OR the bit patterns in registers Sand T and

place the result in register R.

Example: 95F3 would cause the result of EXCLUSIVE

ORing the contents of registers F and 3 to be placed in

register 5

Opcode Operand Description

A R0X ROTATE the bit pattern in register R one bit to the right X

times. Each time place the bit that started at the low-order

end at the high-order end.

Example: A403 would cause the contents of register 4 to

be rotated 3 bits to the right in a circular fashion.

B RXY JUMP to the instruction located in the memory cell at

address XY if the bit pattern in register R is equal to the bit

pattern in register number 0. Otherwise, continue with the

normal sequence of execution. (The jump is implemented

by copying XY into the PC during the execute phase.)

Example: B43C would first compare the contents of

register 4 with the contents of register 0. If the two were

equal, the pattern 3C would be placed in the program

counter so that the next instruction executed would be the

one located at that memory address. Otherwise, nothing

would be done and program execution would continue in its

normal sequence.

C 000 HALT execution.

Example: C000 would cause program execution to stop.

