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Outline

e Linear least square approximation

e Functional approximation

— Function norm and orthogonal polynomial
— Legendre polynomial

— Chebyshev polynomial

e Rational function approximation



Linear Least Square Problems



Goal

e Given a set of observed data (z1,v1),(z2,y2), - (Tm,ym),
the linear least square problem is to find the coefficient
ai,an,---,an such that the linear combination of a set of
basis functions, {¢1, 9o, -, dn},

n
u(z) = ) aipi(x),
i=1
gives the best model to the data.

e Best is measured by the least square errors

m
i - 12
al,ggj.r!,anj;lyg u(z;)]



Approximation by a straight line LvF pp.350-355

e The straight line model is a1z +a> (¢1 =z and ¢ = 1).

e Find aq,a> to minimize the function

fla1,a2) = 3 [(a1z; + a) — y;]?
1

j:

e The minimum is at the solution of the system

( af m

GTH = 2]2221[(&156]' +a2) —y,lz; =0
\ af m

bap = 2 2 17y F02) — ) =0

\



Normal equation

x1 1 Y1
o Define A = x:z 1 and b = y:2 . The equations can
Tm 1 Ym
be written as a linear system ATA ( Z; ) = ATp
m m m
ATA =I5 = and ATb = | /=5,
2T om > Y
\ j=1 ) \ =)

o ATA ( Zl ) — ATb is called the normal equation.
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Approximation by a parabola LvF pp.356-359

e The model is a1x2 4 arx + a3 (¢p1 = 22, do =z, 3 = 1).

e Find aq1,ap,a3 to minimize the function

m
flai,a2,a3) = Y [(a125 + apzj + az) — y;]°
=1
Of/0a1 =0
e The minimizer is the solution of  df/0ap = 0O
Of/0az =0
2
a1 ( 513% L1 1 \
e Normal equation AT A a> | = ATbH, where A = x:Q x:Q :
“3 \ 2 Tm 1 )

6



General form

e Approximate (z1,y1), (z2,%2), .-, (Zm,ym) by a model
a1¢1(x) + appo(x) + ... + andn(x)

¢1(x1) ¢P2(x1) -+ oOn(z1) aj Y1
o A= </51(:562) (bz(:fvz) qbn(:wz) x=| 2 | b=| ¥
¢1(37m) ¢2(fﬁm) Tt Qb'n(xm) an Ym

e The least square problem minx ||b — Ax||2 can be solved by
the normal equation ATAx = A'b.



T
e Let y =b — Ax. The minimization of yTy is at 2¥¥) = o,

vy = (b— Ax)T(b - Ax) = bTb — 2xTATb + xT AT Ax

T
ag Y — oATb +2ATAx =0
X

The minimizer of ||b — Ax||? is the solution of ATAx = A'b

e A = QR where Q is an m x n matrix with orthonormal
columns, R is an n X n upper triangular matrix.

— Normal equation becomes R' QL QRx = R1Q!b.
— R71 is invertible and Q1 Q = I = Solving Rx = Q'b.

— More stable/cheaper than using normal equation.



Geometric interpretation

e Note the minimizer is not at the solution of Ax = b, but
Ax = QQ'b.
— From Rx = Q1b, pre-multiplying Q to both sides.

e QQ! is an orthogonal projection matrix.

- Projects b to S = span(¢q, 9o, ..., dn) b :
- The error vector b — Ax is orthogonal E
to S when ||b — Ax|| is minimized. h

b — Ax] 00

- The minimum error is ||b — QQ'b||




Total least square problems

mn mn
] —T Y1 —Y
A — 5132.—95 Y2 — Y

e Covariance matrix
C=ATA

e The eigenvector of C, corre-
sponding to the largest eigen-
value, is the slope of the line. =
The first singular vector of A.

0.2 -

T T
linear least square ——
total least square ——

\ \ \
0.6 0.8 1 1

N
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Functional Approximation
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Basic idea

e Want to approximate a continuous real function f(xz) by a
set of continuous functions Pi(z), P>(x),..., Py(x).

e Mathematically, find real numbers aq,a»o,...,an such that

min R |f(x) — (a1 P1(x) + aoPo(x) + -+ + anPn(x))||

a1,a92,...,anc

e Use the same idea from points set
1. Find an orthogonal basis of Pi(xz), P>(x),..., Py(x).

2. Let g(x) be the f(x) projected to the orthogonal basis.

3. Solve g(z) = a1 P1(x) + axPo(x) + - - + anPu(x).

11



Function norm and inner product

e How to measure the "size” of a continuous f(x) on [a,b]?

b
~ 1-norm: |If(@)] = [ [F@)lde
b
— 2-norm: [If@)ll2 = ([ f2(2)de)'/?

= co-norm: || (@)llso = sup, /()

e Suppose f(x), g(x), w(x) are defined on [a,bd], w(xz) > 0.

— Inner product: (f(z), g(x)) Z/Zf(:c)g(az)da:

— Weighted inner product: (f(z),g(z))w = /Zw(az)f(ac)g(az)da:.



Orthogonal functions LvF pp.366

e Functions f1, fo,..., fn are defined on [a,b].

— They are linearly independent if Vx € [a, b]
c1fi(z) +cofo(z) + -+ enfrnl(z) =0

implies c1 =co=... =¢p = 0.

e f1, fo,..., fn are orthogonal if Vi,
. L
(@), 1@ = [ 1@ f5(2)de = { o i

— Orthogonal implies linearly independent.
— If a; = 1 for all 7, they are orthonormal.
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Gram-Schmidt process LVF pp.366

e Same as what we have learned in chap 4, but with different
definition of inner product and norm.

e Given a set of functions, f1, fo,..., fn, construct a set of or-
thonormal functions g1, go, ..., gn that span the same " space’ .
1. g1 = f1/llf1ll
2. Fori=2,...,n

i—1
(@) g = fi — kzl<gk:7 fi) 9

(b) gi = gi/llgill
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Orthogonal polynomial LvF pp.366

e 1, 2,22, ...,2" are linearly independent on [—1,1], but not
orthogonal.

e Using Gram-Schmidt process, we have

folz) = 1/V2
filz) = /3/2z

_ fas s, 1
fo(x) = g(iﬂ —§>

e Recurrence: akfk_|_1 —+ (bk: — Cl?)fk + Ck:fk:—l =0 for k> 1.

e [ he roots of f,. and f,._q are interleaving.
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Legendre polynomials LvF pp.368

— — 1 d" 2 n
o Po(x) =1 and Py(x) = Sl [(a: —1) ] for n > 1.

o (n+1)Pyi1(2) = (2n + DaPa(z) — nPy_1(x)

1

Py =1
PP = =z [
P, = 1/2(3z°—1)

Ps = 1/2(5z3 — 3z2) |
Py = 1/8(25z% — 3022 — 3)

Ps = 1/8(63z° — 7023 — 152) |

<P’L7P’L>: '2 1

2’L+ 1 T -6.5 6



Approximation by Legendre polynomials Lvr
pp.369

e For a function f(x) in [—1,1]. Find cg,c1,...,cn Such that
UL 1f(x) = (coPp(x) + c1Pr(x) + -+ + enPu(x)) ]

o Let e(z) = f(z) — (coPo(z) +c1P1(z) + -+ enPr(z)).
To minimize |le(z)||, {e(x), P;(x)) must be O.

(e(z), Pi(x)) (f(z) = (coPo(z) + c1P1(z) + - + cnPn(2)), Pi(x))
(f(z), Pi(z)) — co(Po(z), Fi(z)) — -+ — (Pu(z), Fi(x))
(f (@), Pi(x)) — ¢i(Pi(x), Pi(x)) = O

e The coefficient ¢; = (f (@), Fi()) = 2t 1<f(:c),Pi(:c)>.

(Pi(z), Fi(x)) E
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Chebyshev polynomials LvF pp.370

e Definition: Ty, (x) = cos(n arccos(x)).
e Change variables: let § = arccos(xz). T, () = cos(nbh).

To(x) cos(0) =1

Ti(x) = cos(f) ==z

Ts(x) cos(20) = 2cos?() — 1 = 2z° — 1

Ts(x) cos(30) = 4 cos3(0) — 3cos(h) = 4x> — 3z

e Recurrence: T4 1(x) = 22Tx(x) — T),—1(x)

— cos((n+1)60) + cos((n —1)0) = 2cos(f) cos(nbh).
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0, if m #= n;
de = ¢ ©/2, if m=mn #*0;

-1 /1 — 22 r, ifm=n=0.

2k —1

2n

e The roots of Ty, (x) are cos( w) ,fork=1,...,n.

e [ he function,

fn(z) = Tn(f@/zn_la o

has minimal oo-norm,
2—(n=1)  on [-1,1]
among all the polyno-
mial of degree n with
leading coefficient 1.

-0.5




Rational Function Approximation
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Taylor approximation LvF pp.375

e The Taylor polynomial of degree n that approximates f(x)

near r = a.
e (") (g

(@) = @)+ @ @)+ D@+ + D oy
Ft ()

— The error is bounded by (z —a)" T for some 7

(n 4+ 1)!
between x and a.

e Not a good approximation if the function has singularities.

e Here we only consider a = 0 case (Maclaurin series).
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Pade approximation LVvF pp.372

e Approximate f(x) by a rational function.

pm () _ amx™ 4+ ...+ a1z + ag
Qn(af) bnx™ + ...+ b1z +1

rmn(x) =

e Let k= m + n and t(x) be the kth order Taylor polynomial
of pm(x)/an(®), ti(x) = cpa® + - + cox? + c12 + co.

— We want rp n(z) to have the same function value and
derivatives of all orders up to k as t;(x).

rm,n(0) = £4,(0), 7, n(0) = £4.(0), - -, 7% ,(0) = £ (0).

— k+ 1 unknowns and k£ + 1 equations.
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e To make things easier, use the expression qn(xz)ti.(x) = pm(x).

(bnzx"+. . .—I—blx—l—l)(ckazk—l—- cdcixtcg) = amz™+. . .Fairtag

o Let g(z) = gn(x)tg(x).

g (@) = qn(z)t,(z) + ¢, (z)tr(x)
9" (z) = au(@)t)(z) + 2¢,(x)ti(z) + g, (z)t;(z)

. " n! _
g(n)(x) — ;Oj|(n_*7)l (J)(x)tl(g ])(CU)

j—1
e General relations: a; =c¢; + > ¢bj_;, for j=0,1,... k.
i=0



Rational function approximation

e at 0 first order | second order third order
Taylor approx 142 142+ %xz 142+ %xz + %x?’
Inverse approx | 1/(1 —x) 1/(1—:1:—|—%x2) 1/(1—:1:—|—%:1:2—%x3)

: 14x/2 14z/24x°/12 14+z/2+x2/10+23/120
Rational approx | 375 1_z/2+22/12 1—2/2422/12—23/120




