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ABSTRACT

Motivation: High-accuracy de novo assembly of the short sequencing

reads from RNA-Seq technology is very challenging. We introduce a

de novo assembly algorithm, EBARDenovo, which stands for

Extension, Bridging And Repeat-sensing Denovo. This algorithm

uses an efficient chimera-detection function to abrogate the effect of

aberrant chimeric reads in RNA-Seq data.

Results: EBARDenovo resolves the complications of RNA-Seq as-

sembly arising from sequencing errors, repetitive sequences and ab-

errant chimeric amplicons. In a series of assembly experiments, our

algorithm is the most accurate among the examined programs, includ-

ing de Bruijn graph assemblers, Trinity and Oases.

Availability and implementation: EBARDenovo is available at http://

ebardenovo.sourceforge.net/. This software package (with patent

pending) is free of charge for academic use only.

Contact: cykao@csie.ntu.edu.tw, htchu@asia.edu.tw or postergrey@

gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on November 9, 2012; revised on January 18, 2013;

accepted on February 18, 2013

1 INTRODUCTION

RNA-Seq technology has revolutionized transcriptomic studies in

recent years. In comparison with microarrays, this high-

throughput sequencing technology allows the detection of novel

transcripts. It also has a wider dynamic range in detecting tran-

script abundance than tiling arrays (Agarwal et al., 2010; Kampa

et al., 2004), serial analysis of gene expression (Burke et al., 1999;

Velculescu et al., 1995) and cap analysis of gene expression

(Shiraki et al., 2003). RNA-Seq is especially important for study-

ing organisms without reference genomes. With reference

genomes, accurate reads can be identified and mapped to the ref-

erence for accurate and sensitive quantification of even lowly ex-

pressed transcripts. However, for organisms without reference

genomes, the short reads from RNA-Seq have to be assembled

into contigs representing the transcripts before the expression level

can be determined from the read coverage. In this case, sequencing

errors may cause mis-assembly, create artificial contigs and con-

sequently produce inaccurate interpretation of transcript abun-

dance (Garcia et al., 2012).

De novo assembly of short reads faces computational chal-

lenges from classical sequencing problems such as sequence re-

peats, homologous genes and artificial chimeric reads (Fig. 1)

(Kircher et al., 2011). Most de novoRNA-Seq assemblers, includ-

ing Trans-Abyss (Robertson et al., 2010), Oases (Schulz et al.,

2012) and Trinity (Grabherr et al., 2011), are de Bruijn graph–

based methods. In de Bruijn graphs, reads are either represented

as k-mer nodes or as k-mer edges, and Eulerian paths between

end nodes are examined for assembling sequences (Pevzner et al.,

2001). Both sequence repeats and artificial chimeric reads

will cause erroneous k-mer nodes. Most of de Bruijn genome

assemblers, such as Velvet (Zerbino and Birney, 2008) and

ALLPATHS (Butler et al., 2008), filter out low-frequency

k-mer nodes to improve accuracy, as low-frequency k-mer

nodes are more likely to be sequencing artifacts. However, de

novo assembly of RNA-Seq data is more difficult because the

abundance of RNA transcripts varies significantly (Grabherr

et al., 2011). Although de Bruijn–based algorithms have been

successfully used to construct many transcriptomes using

RNA-Seq data, it has always been difficult to keep the assembly

both accurate and sensitive. Low-frequency k-mer nodes are im-

portant for discovering low-abundance transcripts. For sensitive

detection of novel transcripts, RNA-Seq assemblers usually do

not eliminate low-frequency k-mer nodes. Unfortunately, retain-

ing low-frequency k-mer nodes would reduce assembly accuracy.

In this study, we introduce an efficient algorithm for RNA-Seq

assembly, with special emphasize on detecting chimeric reads and*To whom correspondence should be addressed.
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assembly errors. We showed that our new de novo assembly al-
gorithm, designated EBARDenovo, has enhanced accuracy,
while it still maintains high sensitivity in determining transcript
abundance.

2 METHODS

2.1 Key principles of EBARDenovo

The new algorithm, EBARDenovo, which stands for Extension,

Bridging And Repeat-sensing Denovo, applies a bi-directional
expansion method using paired-end RNA-Seq data to guide
the transcriptome assembly (Fig. 2a).
In this algorithm, the construction of a contig begins with a

seed read. Searches are done to find proper neighboring reads at
both ends of the seed. Two reads that come from the same
paired-end sequencing reads are defined as read mates of each

other. To avoid potentially ambiguous assembly created by
repeat sequences, a proper extension must satisfy one of two
conditions (Fig. 2b): i) a read mate can be found inside the

contig that is currently being constructed; or ii) a read mate
can be found in a neighboring (usually overlapping) contig. To
ensure both conditions are satisfied for a contig extension, a

chimera-detection test is performed on the paired candidates
(Fig. 2c). Assuming there is a chimeric read Rc composed of
two fragments from transcripts TA and TB, the correct assembly
should always have higher read coverage than the contig con-

taining the chimeric reads. In this case, the backtracking from the
other end of chimeric read Rc will find a set of correct reads from
transcript TB, and the alignment of these reads is compared with

the nucleotide bases of the current contig to determine whether
the program can correctly expand the contig or cause a trans-
location of the two segments.

2.1 EBARDenovo: the proposed algorithm and key

operations

EBARDenovo algorithm consists of three key operations: exten-
sion, bridging and repeat sensing. These operations are applied

to both the right-end and the left-end expansions such that the

selected sub-optimal reads are added in these operations.
Before starting the three assembly operations, EBARDenovo

defines the first few base pairs (the default is 15 bp) of each read

as its indexing keys. The reads are also sorted according to their

abundance, and the most abundant read is selected as the first

seed for the extension, followed by the second most abundant

reads and so on.
To start the extension operation of assembly, the 2nd to the

nth bp (the default is from 2nd to 16th bp corresponding to a 15-

mer) will be used as the query key to search against the indexing

keys of all reads. If no matching key is found, a query key will be

generated from the 3rd to the 17th bp and so on. If a matching

key is found, the reads containing this key will be aligned to the

seed read at the error detection area (Supplementary Fig. S4).

Error detection area is the overlapping region between the seed

and the matching read, but excluding the key index region. At

this step, all perfectly matched reads will be merged to extend the

seed to a longer contig. If no perfect candidate is available, the

reads with fewest mismatches will be used. However,410% mis-

match in the error detection area is not tolerated.
In the bridging operation, EBARDenovo uses paired-end in-

formation to constrain the search space. By using ‘foreseeable

reads’ to confirm correct assembly, reads with as small as 15 bp

overlaps can be constructed into reliable contigs. A read is ‘fore-

seeable’ if one of its paired-end sequenced mates is already in the

contig (Fig. 3a). If a foreseeable read is already aligned in the

contig, the extension of an assembled contig is continued

(Fig. 3a). The extension at this stage is only one-way, either

left to right or right to left. This is because bi-directional exten-

sion of a chimeric seed read would probably generate a chimeric

contig, and there is insufficient information to detect chimeric

reads at this stage. In the case that the foreseeable read is not

Fig. 2. The key principles in EBARDenovo for achieving high accuracy.

(a) The outline of EBARDenovo algorithm. Candidate reads are itera-

tively added at both ends with three operations: extension, bridging and

repeat sensing. (b) The two conditions for the alignment of an adjacent

pair of reads (Ra and Rb) or (La and Lb). (i) the paired mate (Lb or Ra) is

inside the current contig. (ii) The paired mate (Rb) is found in neighboring

(usually overlapping) contigs. (c) Dynamic chimera detection. The

aligned reads from the backtracking process are compared with the con-

sensus sequence (TA) to detect potential chimeric junctions

Fig. 1. The two major sources of errors in RNA-Seq de novo assembly.

(a) The presence of common sub-sequences (repetitive sequences, hom-

ologous sequences) among transcripts causes reads to merge by mistake

and produce mis-assembly (i). By using paired-end reads, the opportunity

for mis-assembly is reduced. (b) Aberrant chimeric amplicons composed

of disjointed regions of one or more transcripts can cause erroneous as-

sembly of reads into artificial contigs
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within the temporary contig, the foreseeable read will be used as

seed read and extended backward to see whether the extension

can reach the temporary contig (Fig. 2b). The insert sizes of

paired-end RNA-Seq can be very different even within the

same dataset. To avoid the assembly quality being affected by

the varying insert sizes, the insert sizes are not evaluated in

EBARDenovo.

The repeat-sensing operation also uses foreseeable reads to

identify repetitive sequences naturally occurring in transcripts

and resolve the issue of multiple expansions (Fig. 3b). A contig

is split when multiple expansions occur, and the extension oper-

ation is then executed if there are no other foreseeable reads to

indicate possible bridging (Fig. 3c). If the extension operation

fails owing to sequencing errors, the algorithm will go back to

Fig. 3. The key steps of EBARDenovo. (a) ‘Read foreseeing’ tracks the paired mates of the aligned reads, which have not been aligned in the contig.

These unaligned reads can be merged into the contig in upcoming operations of extension, bridging or repeat sensing. (b) In the extension operation,

candidate reads are selected from the read pool according to a short indexing key. (c) In the bridging operation, foreseeable reads may match the

expanding end of a contig. (d) In the repeat-sensing operation, if there are possible expansions for a contig, it is backtracked along each expanding

possibility. The contig will be split if there are more than two possible expansions. (e) In the extension operation, when a non-foreseeable read is met,

EBARDenovo attempts to align reads from the mate of the non-foreseeable read in the opposite direction of the extension
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the bridging operation (Fig. 3d). The extension and bridging
operations are alternated until the contigs are no longer extend-

able. At the end, all the aligned reads are paired. The entire

procedure of EBARDenovo is illustrated in Figure 4.

2.3 The verification of assembly accuracy using GMAP

The accuracy of assemblers was verified using GMAP (Wu and

Watanabe, 2005) program. GMAP aligns the contigs with a ref-

erence genome to check the correctness of contigs. The
Arabidopsis thaliana genome was downloaded from the TAIR

database (http://www.arabidopsis.org/). The Mus musculus

(mouse) and Homo sapiens (human) genomes were downloaded
from the UCSC Genome database (http://hgdownload.cse.ucsc.

edu). GMAP classifies mapping results into four classes: unique

mapping (U), multiple mapping (M), translocated mapping (T)
and no mapping (N). The no-mapping results were seen as con-

tamination of the RNA samples. The error rates of assembly

results were estimated by the ratio of translocated mappings T/
(UþMþT). The RPKM values for genes were computed with

the software CLC Genomics Workbench 5.1 by mapping the

sequencing reads to the transcriptome databases. RPKM is
defined as (Mortazavi et al., 2008)

the total number of reads

the number of mapped reads� gene length� 109

2.4 Output of EBARDenovo for transcriptome analysis

To easily examine the assembly results, detect potential single
nucleotide polymorphisms (SNPs) and calculate expression

levels of assembled contigs, EBARDenovo offers four types of

output information for each reconstructed sequence, including (i)
the sequences, (ii) the aligned reads in each contig, (iii) the align-

ment of used pairs and (iv) the plot of sequence coverage

(Supplementary Fig. S1). EBARDenovo also outputs the general
information of contigs, the SNPs and the locations of small over-
laps among reads in the same contig. The users can visualize the

variants of the transcripts. In the past, users relied on supple-
mental mapping tools, e.g. Bowtie (Langmead et al., 2009), to

map reads to a contig and to estimate the abundance, whereas
EBARDenovo alone can produce sufficient information for

advanced analyses such as the identification of RNA editing
sites (Brennicke et al., 1999) and gene fusion candidates (Vega

and Medeiros, 2003). We expect that EBARDenovo can enhance
the experience of RNA-Seq analysis.

2.5 Software implementation

EBARDenovo is implemented in C# with the .NET Framework.

The executable program can be run on 64 bit operating systems
such as Windows, Linux and Mac OS. On Linux or Mac OS,

Mono framework (http://www.mono-project.com/) needs to be
installed to run the program. EBARDenovo program and the

user manual can be downloaded from http://ebardenovo.source-
forge.net/. It is also available as Supplementary Software.

Fig. 4. The flowchart of the EBARDenovo algorithm

Fig. 5. Comparisons of GMAP tests for the assemblies of different

RNA-Seq datasets by EBARDenovo, Trinity and Oases

Table 1. List of test RNA-Seq data sets

Organism Experiment Assembly

runs

Read

length

Spots Bases

A.Thaliana Test data ntubioteca 90 bp 6.7 M 1.2 G

SRX112186 SRR391052b 76 bp 27 M 4.1 G

Mouse SRX118647 SRR404355 50 bp 13 M 1.3 G

SRX064476 SRR212430 72 bp 21 M 3.0 G

Human SRX135562 SRR453391 76 bp 16 M 2.4 G

SRX087128 SRR324684 100 bp 18 M 3.6 G

aThe test data of A.thaliana is provided by the Institute of Biotechnology, NTU.
bThe other five datasets were available from the ENA (http://www.ebi.ac.uk/ena/).
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3 RESULTS AND DISCUSSION

3.1 RNA-Seq datasets and tested de novo assembly

algorithms

We tested our algorithm against two de Bruijn graph–based as-

semblers, Trinity and Oases, using six RNA-Seq datasets (listed

in Table 1) from three model organisms: A.thaliana, M.musculus

(mouse) and H.sapiens (human). We used four sizes of k-mers

(21, 25, 29 and 33 bp) to run the Oases assembly. The assemblies

with k-mers of 29 and 33 bp were used to produce the merging

results known as Oases-M assemblies. Trinity only provides a

fixed size of k-mer (25 bp). By default, EBARDenovo directly

searches for candidate reads by an indexing key (15 bp). The

detail assembly results are listed in Supplementary Table S1.
The assembly results were verified with the transcriptome and

genome databases TAIR (Rhee et al., 2003) (for A.thaliana) and

NCBI Reference Sequences (RefSeq) (for mouse and human)

using the mapping tool on CLC Genomics Workbench and

GMAP (Wu and Watanabe, 2005). We showed the comparison

of mapped transcripts by different algorithms in Supplementary

Figure S2. Moreover, we checked the intersection of map-

ped transcripts between different assemblies in Supplementary

Fig. 6. Efficiency of different assemblers, including EBARDenovo, Trinity and Oases
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Figure S3. It is obvious that many transcripts can be successfully

reconstructed by only one assembler in each dataset.

3.2 EBARDenovo produced most accurate assemblies for

RNA-Seq datasets

To calculate accuracy of different assembly results, we mapped

assembled contigs to their reference genomes using GMAP pro-

grams to detect translocation caused by potential mis-assembly.

If a contig is mapped to different gene models in a chromosome

or even different chromosomes, it is counted as an artificial

translocation event. If a correct assembly of a natural gene

fusion occurs, it will also be counted as a translocation event

in the GMAP test. However, we assumed such natural fusion

genes to be rare. We also recorded events of a whole contig

mapped to multiple locations of the reference genome (multiple

mapping) but did not count them as translocation errors because

such events were detected even when reference transcripts were

used in our GMAP test. It is obvious that EBARDenovo gener-

ated the least number of translocations among three programs in

all the six experiments (Fig. 5). In the A.thaliana datasets, the

number of erroneous contigs by EBARDenovo is less than

one-fifth of those by Trinity. In the mouse and human datasets,

Trinity produces two to three times more erroneous contigs than

EBARDenovo. The assembly results by Oases with a smaller

k-mer (21 bp) produced more translocation than with a bigger

k-mer (25 bp). The merging assembly by Oases will accumulate

errors from the assemblies with different k-mers. The detail re-

sults of GMAP test are listed in Supplementary Table S2.
The high accuracy of the proposed algorithm implies more

stringent trimming of inaccurate contigs, which results in the

reduction of contig length. For this reason, we checked the cor-

rectness of contigs at comparable lengths. We divided the contigs

by their lengths into three groups (600�799, 800�999 and

1000�1199 bp). We evaluated the accuracy of each contig

group for the three assemblers using the GMAP. Supplementary

Table S3 shows the results. In all the contig groups for all six

datasets, EBARDenovo always produces the most accurate

results.

3.3 The comparison of assembly coverage at different

expression levels by different assemblers

To evaluate the performance of different assemblers on the re-

construction of full-length transcripts, EBARDenovo and the

other two assemblers were compared using three RNA-Seq data-

sets: SRX112186 (A.thaliana), SRX118647 (mouse) and

SRX135562 (human). The expression quantiles were calculated

using the RNA-Seq Analysis tool in the CLC package. The com-

pletion of transcript reconstruction was estimated by comparing

contigs with reference cDNA sequences from TAIR (Rhee et al.,

2003) and RefSeq (Pruitt et al., 2012). Transcripts with higher

coverage generally can be reconstructed much closer to full

length, by merging contigs generated from different k-mers,

Oases-M, therefore, produced a more completed reconstruction

than other tools (Fig. 6), but paid a high price in accuracy

(Fig. 5). Artificial translocations generated by Oases-M were

much greater than those generated by the programs using only

a fixed k-mer. In addition, performance of Oases clearly dropped

for highly expressed transcripts. In contrast, EBARDenovo gave

the best performance on transcripts with high expression.

4 CONCLUSIONS

EBARDenovo is designed for accurate assembly of paired-end

RNA-Seq data. It consumes less memory space than Trinity and

Oases, whereas its speed is between that of Trinity and Oases

(Table 2). More importantly, in our experiments, the contigs

produced by EBARDenovo have much higher accuracy than

those by both Trinity and Oases. The detection of aberrant chi-

meric reads is the key factor for high accuracy of EBARDenovo.
Accurately generating full-length transcripts and low-

expression transcripts are important goals for the assembly of

RNA-Seq data. There are chimeric transcripts created by natural

gene fusion or sequence recombination. Methods such as

EricScript have been developed to identify these naturally occur-

ring chimeric sequences (Benelli et al., 2012). Nonetheless, there

are also aberrant chimeric reads, which are artifacts from sequen-

cing processes. Chimeric read detection methods, such as

ChimeraScan (Iyer et al., 2011) and UCHIME (Edgar et al.,

2011), require reference genomes and are therefore not applicable

in de novo assembly. The de Bruijn graph assemblers, such as

Velvet (Zerbino and Birney, 2008), do not use active

chimera-detection functions, but instead, remove low-coverage

reads (occurrence �2) as potential aberrant chimeras. This rule

makes the Velvet algorithm less suitable for RNA-Seq data, as

the abundance of transcripts vary greatly. The other de Bruijn

graph assemblers, such Oases and Trinity, relax the rule of elim-

inating low-coverage contigs to allow the assembly of rare reads

(occurrence¼ 1) (Jiang et al., 2011). However, the preservation

of potential aberrant chimeric reads may produce artificial trans-

locations of transcripts in the final assembly.

In the past years, de Bruijn graph methods had showed its

advantage for full-length assemblies, but chimeric k-mer nodes

limited the capability of modern de Bruijn graph algorithms

to generate accurate low-coverage assemblies. Moreover,

using shorter k-mer in de Bruijn graph assembler algorithms

produces more mis-assemblies (Schulz et al., 2012), whereas

EBARDenovo can maintain high accuracy of assembly even

Table 2. Performance comparison between RNA-Seq assemblersa

Algorithm Maximal memoryb Time

EBARDenvo (key index¼ 15)c 3.3 G 39min

Trinity (k-mer¼ 25) 5.1 G 264min

Oases (k-mer¼ 21) 4.4 G 18min

Oases (k-mer¼ 25) 3.9 G 16min

aThe results were from the assemblies of the A.thaliana test data (in Table 1).
bThe maximal memory of running Trinity was the memory usage of the

GraphFromFasta process at the stage of Chrysalis. The default Jellyfish process

of the Inchworm stage usually consumes more memory (10�100 G) for good per-

formance.
cAll the programs were run on VMware Virtual machines. The host machine is an

i7-3820 PC with 32G RAM. Trinity and Oases were run on Ubuntu 10.04, and

EBARDenvo was run on Windows 7. Both virtual machines are equipped with

same memory space (24 G) and same CPU cores (2:2).
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with a short key length (Supplementary Fig. S5). In conclusion,
the EBARDenovo algorithm is a promising new approach to
identify transcripts from RNA-Seq analysis.
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