Test 2 for ISA5305, Fall 2019

Due in class of Thursday, December 26, 2019

Name:	ID:	
1 1 001100 .	 · · _	

(15%) 1(a) Let X be a continuous type of random variable that takes only nonnegative values. For any $\beta > 0$, prove that

$$P(X \ge \beta) \le \frac{E(X)}{\beta}$$

(15%) 1(b) Let X be a continuous type of random variable with mean $E(X) = \mu$ and variance $Var(X) = \sigma^2$. For any $\tau > 0$, show that

$$P(|X - \mu| \ge \tau) \le \frac{\sigma^2}{\tau^2}$$

(a)	Let $\{X_i, 1 \le i \le 9\}$ be a random sample of size 9 from $N(2,1)$. Define $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i$ and $Y = \sum_{i=1}^{9} (X_i - 2)^2$. Then
	the moment-generating function $M_{\overline{X}}(t) = \underline{\hspace{1cm}}$

(30%) 2. Fill the following blanks (no partial credits).

the moment-generating function $M_Y(t) =$

(b) Let $\{Z_i \sim N(0,1), 1 \leq i \leq 10\}$ be a random sample of size 10. Define $V = \sum_{i=1}^{10} Z_i$ and $W = \sum_{i=1}^{10} Z_i^2$. Then

the probability density function of V, $f_V(x) = \underline{\hspace{1cm}}$

the moment-generating function $M_W(t) =$ _____ and the p.d.f. of W, $f_W(x) =$ _____

(c) Let $\{X_1, X_2, \dots, X_n\}$ be a random sample of size n from the exponential distribution with $E(X_n) = 3$. Define $Y = \sum_{i=1}^n X_i$. Then

the p.d.f. of Y, $f_Y(y) =$ _____

the moment-generating function of $Y, \phi_Y(t) =$

(d) Let $Z \sim N(0,1)$. Define Y = 3Z + 2, then the p.d.f. of Y, $f_Y(y) =$ _______ the moment-generating function of Y, $\phi_Y(t) =$ ______

(e) Let $\{X_i \sim \chi^2(1), \ 1 \leq i \leq n\}$ be a random sample and define $W_n = (\sum_{i=1}^n X_i - n)/\sqrt{2n}$. According to the Central Limit Theorem,

the limiting distribution function of $W_n \lim_{n\to\infty} P(W_n \leq w) = \underline{\hspace{1cm}}$

the limiting moment-generating function is $limit_{n\to\infty}M_{W_n}(t)=$

(10%) 3. Let the r.v. X have the p.d.f. $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, 0 < x < 1, where $\alpha, \beta > 0$ are known positive integers.

Find E[X] and Var[X].

Hint:
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 and $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

- (20%) 4. Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics of a random sample $\{X_1, X_2, \cdots, X_n\}$ from the uniform distribution U(0, 1).
 - (a) Find the probability density function of $X_{(1)}$.
 - (b) Use the results of (a) to find $E[X_{(1)}]$.
 - (c) Find the probability density function of $X_{(n)}$.
 - (d) Use the result of (c) to find $E[X_{(n)}]$.

- (10%) 5. Let X have the p.d.f. $f(x) = \beta x^{\beta-1}$, 0 < x < 1 for a given $\beta > 0$. Define $Y = -3\beta ln(X)$.
 - (a) Compute the distribution function of Y, $P(Y \le y)$, for $0 < y < \infty$.
 - (b) **Derive** the moment-generating function $M_Y(t)$.
 - (c) Compute E(Y) and Var(Y).