H5: Image Compression Based on Discrete Cosine Transform

Due by May 23, 2003 (optional)

This project is to study how much storage space can be reduced on DCT-based JPEG still image compression. You are asked to write or implement a program which takes a 512×512 image as input to do

- (1) Partition the image into 4096 8×8 nonoverlapping blocks.
- (2) Apply 2D DCT on each block after 128 subtraction from each pixel value to get DCT coefficients.
- (3) Quantize the DCT coefficients in (2) using the Quantization table.
- (4) Rearrange quantized DCT coefficients in each block according to the zigzag scan order.
- (5) For each block, report the intermediate pair for the quantized DC coefficient (QDC) and a triple for each quantized AC coefficient (QAC_j) , ended with (0,0) or EOB
 - (# of bits)(QDC), (Zero runlength, # of bits, QAC_1), (Zero runlength, # of bits, QAC_2), . . . , EOB
- (7*) Translate the code to .jpg file format by either Huffman coding or arithmetic coding.

At least report your results for images *lenna*, *peppers* on (5) with 4096 lines, each represents a block.

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Table 1: Quantization Table for DCT Coefficients