Exam 2 for EECS3030(02), Spring 2020 10:10-11:45 Weddnesday, June 17, 2020

	$Name: _$	SN :	Index :			
(30	pts) 1. Fill the following blan	nks.				
(a)	Let $\{X_i \sim b(16, 0.75), 1 \le i \}$ Define $X = \sum_{i=1}^{10} X_i$, then	≤ 10 } be a random sample	from a binomial distribution			
	the moment-generating func	etion $M_X(t) = $	Var(X) =			
	the probability mass function	on of X , $f_X(x) = $				
(b)	Let $\{Y_i, 1 \le i \le 8\}$ be a rand 2 and define $Y = \sum_{i=1}^{8} Y_i$.		oution with variance $Var(Y_8) =$			
	the moment-generating func	etion $M_Y(t) = \underline{\hspace{1cm}}$				
	the p.m.f. of Y , $f_Y(y) = $		$\underline{\hspace{0.5cm}}$, $Var(Y) = \underline{\hspace{0.5cm}}$			
(c)	Let the joint probability distribution function of the lifetimes of two brands of mobil phones be given by $F(x,y) = (1-e^{-x})(1-e^{-y})$ if $x > 0$, $y > 0$. Then the probability that one mobile phone lasts more than three times as long as the other is					
(d)	Let the joint probability den $f(x,y) = 8xy, 0 \le x \le y \le 0$		ariables X and Y be given by			
	$f_X(x) = \underline{\hspace{1cm}},$	$E(Y) = \underline{\hspace{1cm}}, \rho()$	$X,Y) = \underline{\hspace{1cm}}$			
(e)	Let the conditional probabili-	ty density function of X , giv	ven that $Y = y$, be			
	$f_{X Y}(x y)$	$(x) = \frac{x+y}{1+y}e^{-x}, 0 < x < \infty,$	$0 < y < \infty$.			
	$P(X < 4 Y = 1) = \underline{\hspace{1cm}}$					

(30pts) 2	. Fill	the	following	blanks.
-----------	--------	-----	-----------	---------

(a) Suppose that X and Y are independent and identically distributed exponential random variables with variance 4. Define $W = \frac{Y}{X+Y}$. Then

the probability density function $f_Y(y) = \underline{\hspace{1cm}}$

 $E(W) = \underline{\hspace{1cm}}, \quad Var(W) = \underline{\hspace{1cm}}$

(b) Let $\{X_i, 1 \leq i \leq 12\}$ be a random sample with the probability density function $f_{X_1}(x) = \frac{1}{16}x^2e^{-x/2}, x > 0$. Define $W = \sum_{i=1}^{12} X_i$. Then

the moment-generating function $M_{X_3}(t) = \underline{\hspace{1cm}}, \ Var(X_3) = \underline{\hspace{1cm}}$

the moment-generating function $M_W(t) =$

(c) Let $\{X_1, X_2, \dots, X_9\}$ be a random sample of size 9 from the exponential distribution with $Var(X_4) = 4$. Define $Y = \sum_{i=1}^{9} X_i$. Then

the moment-generating function of Y, $\phi_Y(t) = \underline{\hspace{1cm}}$,

the p.d.f. of $Y, f_Y(y) = \underline{\hspace{1cm}}, Var(Y) = \underline{\hspace{1cm}}$

(d) Let $Z \sim N(0,1)$. Define Y = 3Z + 2, then

the p.d.f. of Y, $f_Y(y) = \underline{\hspace{1cm}}$

the moment-generating function of $Y, \phi_Y(t) = \underline{\hspace{1cm}}, Var(Y) = \underline{\hspace{1cm}}$

(e) Let $\{X_i \sim b(12, 0.5), 1 \le i \le n\}$ be a random sample from a binomial distribution of size n. Define $W_n = (\sum_{i=1}^n X_i - 6n)/\sqrt{3n}$.

 $E(X_n) = \underline{\hspace{1cm}}$, $Var(X_n) = \underline{\hspace{1cm}}$ According to the Central Limit Theorem,

the limiting moment-generating function, $limit_{n\to\infty}M_{W_n}(t) =$

- (10pts) 3. Let $\{X_i \sim N(3,4), \ 1 \leq i \leq n\}$ be a random sample of a normal distribution. Define $W = \sum_{i=1}^n \frac{X_i 3}{2}, \ Y = \sum_{i=1}^n \left(\frac{X_i 3}{2}\right)^2$.
 - (a) Write down the probability density function of X_n .
 - (b) Calculate the moment-generating function of W and its probability density function, $f_W(w)$, respectively.
 - (c) Calculate the moment-generating function of Y and its probability density function, $f_Y(y)$, respectively.
 - (d) Calculate Var(W), Var(Y), respectively.

(10 pts) 4. The time it takes for a student to finish an aptitude test (in hours) has the probability density function

$$f(x) = 6(x-1)(2-x)$$
 if $1 < x < 2$, and 0 elsewhere.

Approximate the probability that the average length of time it takes for a random sample of 16 students to complete the test in less than 1 hour and 45 minutes (that is, 1.75 hours).

(**Hint**) You can express your solution in terms of $\Phi(r)$, where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$, and $r \in (-4.99, 4.99)$.

- (10pts) 5. Let $\{X_1, X_2, X_3, X_4\}$ be a random sample from the uniform distribution U(0,1) with the set of order statistics $X_{(1)} < X_{(2)} < X_{(3)} < X_{(4)}$.
 - (a) Calculate the distribution function of $X_{(3)}, F_{X_{(3)}}(x) = P(X_{(3)} \leq x)$.
 - (b) Calculate the probability density function of $f_{X_{(3)}}(x)$.
 - (c) Calculate $E[X_{(3)}]$.

(10pts) 6. While rolling a balanced die of six faces successively, the first 3 occurred on the third roll. What is the expected number of rolls until the first 1 appears?