Watermarking Experiments Based On Wavelet Transforms

Chaur-Chin Chen
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300

Tel: +886 3 573-1078 Fax: +886 3 572-3694

E-mail: cchen@cs.nthu.edu.tw

A Proposed Watermarking Scheme

A general watermarking scheme includes

- (a) a watermark acquisition: Sampling N(0,1) with a private seed.
- (b) a watermark embedding: insert the watermark into wavelet coefficients.
- (c) a watermark extraction and verification

Criteria for a Watermark to Meet

- Transparency: The watermark should be perceptually invisible or its presence should not be confused with the image being protected.
- Robustness: The watermark should still be detected after the image has undergone linear or nonlinear operations (attacks) such as median filtering, cropping, scaling, compression, and enhancement.
- Capacity: The watermarking strategy must be of allowing multiple watermarks to be embedded into an image with each image still being independently verifiable.

Watermark Embedding

Let $\{X(i,j)\}$ be a gray level image of size $N_1 \times N_2$, and let $c_0 = 1/\sqrt{2}$, $c_1 = 1/\sqrt{2}$, define

$$H = \begin{bmatrix} c_0 & c_1 \\ c_0 & -c_1 \\ & & c_0 & c_1 \\ & & c_0 & -c_1 \\ & & & \ddots \\ & & & & c_0 & c_1 \\ & & & & & c_0 & c_1 \\ & & & & & c_0 & c_1 \\ & & & & & & c_0 & c_1 \\ & & & & & & c_0 & -c_1 \end{bmatrix}$$

Then Haar wavelet transform [?] of X can be written as

$$Y = P \bigotimes_{4} H \bigotimes_{3} X \bigotimes_{1} H^{t} \bigotimes_{2} Q \tag{1}$$

where \bigotimes_j is an ordered matrix multiplication, and P,Q are the products of row and column permutation matrices, respectively, for the purpose of downsampling for a coarser wavelet transform.

Watermarking Embedding (2)

Figure 1: A 3-Scale Wavelet Transform.

where $Y_1 = HL_3 = H_{HL3}(X)$ and $Y_2 = LH_3 = H_{LH3}(X)$ are images consisting of wavelet coefficients of high-low and low-high bands at level 3 whose sizes are both $M_1 \times M_2$, where $M_1 = N_1/8$ and $M_2 = N_2/8$, respectively. Let W be a watermark of size $M_1 \times M_2$ which is acquired by sampling N(0,1), a Gaussian distribution with zero mean and unit variance. Our embedding scheme is done pointwise by

$$Y_1 \longleftarrow Y_1 * (1 + \alpha W) \tag{2}$$

$$Y_2 \longleftarrow Y_2 * (1 - \alpha W) \tag{3}$$

where $\alpha \in (0, 0.3]$.

Watermarking Extraction and Detection

Let $\{X(i,j)\}$ be the original image of $N_1 \times N_2$, and let $\{W(i,j)\}$ be an authorized watermark, a matrix of $M_1 \times M_2$. Suppose that $\{Y(i,j)\}$ is an observed image of $N_1 \times N_2$, then the extracted watermark W^* can be computed by the following formulas:

$$Z = H_{HL3}(X) \quad or \quad Z' = H_{LH3}(X)$$
 (4)

$$T = H_{HL3}(Y) \quad or \quad T' = H_{LH3}(Y)$$
 (5)

$$W^*(i,j) = \frac{1}{\alpha} [T(i,j)/Z(i,j) - 1] \quad or \quad W^*(i,j) = \frac{-1}{\alpha} [T'(i,j)/Z'(i,j) - 1] \quad or \quad (6)$$

$$Sim(W^*, W) = (W^*, W) / \sqrt{(W^*, W^*)}$$
 (7)

According to a theorem of Probability Theory, $\{W(i,j)\}$ can be treated as a random sample of size $K=M_1\times M_2$ from N(0,1), and $\{W^*(i,j)\}$ is a set of K numbers, thus, $Sim(W^*,W)\sim N(0,1)$. Therefore, the two-sided confidence interval of $Sim(W^*,W)$ is [-1.96,1.96], which helps determine the significance of the $Sim(W^*,W)$ index or the existence of an extracted watermark.

Experimental Results

Haar	Exp-1	Exp-2	Exp-3	Exp-4	Exp-5	Exp-6	Exp-7	Exp-8
PSNR	41.29	30.46	33.96	45.95	33.34	32.60	30.51	36.01
Sim	41.95	2.66	3.33	23.17	3.40	3.41	2.91	3.12

Table 1: PSNR and Sim of Watermarked Lenna, lena0, Under Attacks.

Figure 2: (a) Lenna, (b) lena0: A Watermarked Image.

Figure 3: 99 Sim values of random watermarks vs. a true one.

Figure 4: Scaling

Figure 5: Smoothing

Figure 6: Cropping

Figure 7: Noise-Adding

Figure 8: JPEG Compression

Figure 9: Fractal Compression

Figure 9: Wavelet Compression