Error Analysis of Lagrange Polynomial Interpolation
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where P(x) = $7_o f (1) Lne(x).
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Proof Note first thatif x = x fork = 0, 1, . .., n, then f(x;) = P(x;) and choosing
£&(x,) arbitrarily in (a, b) yields Eq. (3.4). If x # x, forany k = 0, 1, . . . , n, define the

function g for ¢ in [a, b] by
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= f(6) = P@) — [f(x) — P(x )]l'[{’

Since f € C"*'[a, b], P € C”[a, b], and x # x, for any k, it follows that g € C"*'[a, b].
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Moreover, gx) = f(x) — P(x) — [f(x) — P(x))] H o
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= f(x) — P(x) = [f(x) — P(x)] = 0.

Thus, g € C"*'[a, b] and g vanishes at the n + 2 distinct numbers x, xq, Xy, . . . , X,. By
the Generalized Rolle’s theorem, there exists £in (a, b) for which g * (&) = 0. So,
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Since P is a polynomial of degree at most n, the (n + 1)st derivative, P"" ", is
identically zero. Also, HLO [t—x ,-)/ (x — x;)] is a polynomial of degree (n + 1), so
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Equation (3.5) now becomes
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and, upon solving for f(x),
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The error formula in Theorem 3.3 is an important theoretical result because Lagrange
polynomials are used extensively for deriving numerical differentiation and integra-
tion methods. Error bounds for these techniques are obtained from the Lagrange error
formula.
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3.1 Interpolation and the Lagrange Polynomial 103

Note that the error form for the Lagrange polynomial is quite similar to that for the
Taylor polynomial. The Taylor polynomial of degree n about x,, concentrates all the known
information at x, and has an error term of the form
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The Lagrange polynomial of degree n uses information at the distinct numbers x,
Xy, ..., X, and, in place of (x — x;)", its error formula uses a product of the n + 1 terms
(= x) (& —x1)so .00 (x — X,
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The specific use of this error formula is restricted to those functions whose derivatives
have known bounds.

Suppose a table is to be prepared for the function f(x) = e, 0 = x = 1. Assume the
number of decimal places to be given per entry is d = 6 and that the difference between
adjacent x-values, the step size, is h. What should /& be for linear interpolation (i.e., the
Lagrange polynomial of degree 1) to give an absolute error of at most 1077

Letx € [0, 1] and suppose j satisfies x; = x = x;_,. From Eq. (3.4), the error in linear
interpolation is
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Since the step size is A, it follows that x; = jh,x;. | = (j + 1)h, and
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Hence, [fx) — P)| =1 max ef max |(x — jh)x — (j + Dh)|.
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By considering g(x) = (x — jh){x — (j + Dh) for jh = x = (j + 1)h and using
techniques of calculus (see Exercise 24),
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Consequently, the error in linear interpolation is bounded by
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Hence it is sufficient for & to be chosen so that
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Letting & = 0.001 would be one logical choice for the step size. E = =




