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Problems of Eigenvalues/Eigenvectors

♣ Reveiw of Eigenvalues and Eigenvectors

♣ Gerschgorin’s Disk Theorem

♣ Power and Inverse Power Methods

♣ Jacobi Transform for Symmetric Matrices

♣ Spectrum Decomposition Theorem

♣ Singular Value Decomposition with Applications

♣ QR Iterations for Computing Eigenvalues

♣ A Markov Process

♣ eA and Differential Equations

♣ Other Topics with Applications
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Definition and Examples

Let A ∈ Rn×n. If ∃ v 6= 0 such that Av = λv, λ is called an eigenvalue of matrix A,
and v is called an eigenvector corresponding to (or belonging to) the eigenvalue λ. Note
that v is an eigenvector implies that αv is also an eigenvector for all α 6= 0. We define the
Eigenspace(λ) as the vector space spanned by all of the eigenvectors corresponding to the
eigenvalue λ.

Ax = λx ⇒ (λI − A)x = 0, x 6= 0 ⇒ det(λI − A) = P (λ) = 0.

Examples:

1. A =







2 0

0 1






, λ1 = 2, u1 =







1

0






, λ2 = 1, u2 =







0

1






.

2. A =







2 1

0 1






, λ1 = 2, u1 =







1

0






, λ2 = 1, u2 =







−1

1






.

3. A =







3 1

1 3





, λ1 = 4, u1 =







1

1





, λ2 = 2, u2 =







−1

1





.

4. A =







0 −1

1 0





, λ1 = j, u1 =







1

j





, λ2 = −j, u2 =







j

1





, j =
√
−1.

5. B =







3 0

8 −1





, then λ1 = 3, u1 =









1√
5

2√
5









; λ2 = −1, u2 =







0

1





.

6. C =







3 −1

−1 3






, then τ1 = 4, v1 =









1√
2

−1√
2









; τ2 = 2, v2 =









1√
2

1√
2









.

Note that ‖ui‖2 = 1 and ‖vi‖2 = 1 for i = 1, 2. Denote U = [u1,u2] and V = [v1,v2], then

U−1BU =







3 0

0 −1






, V −1CV =







4 0

0 2







Note that V t = V −1 but U t 6= U−1.
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∑n
j=1 λj =

∑n
i=1 aii and

∏n
j=1 λj = det(A)

Let A ∈ Rn×n, then P (λ) = det(λI − A) is called the characteristic polynomial of matrix
A.

2 Fundamental Theorem of Algebra

A real polynomial P (λ) = λn+an−1λ
n−1+· · ·+a0 of degree n has n roots {λ1, λ2, · · · , λn}

such that

P (λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) = λn −
(

n
∑

i=1

λi

)

λn−1 + · · ·+ (−1)n

(

n
∏

i=1

λi

)

• ∑n
i=1 λi =

∑n
i=1 aii = tr(A) (calledthetraceofA)

• ∏n
i=1 λi = det(A)

2 Gershgorin’s Disk Theorem

Every eigenvalue of matrix A ∈ Rn×n lies in at least one of the following disks

Di = {x | |x− aii| ≤
∑

j 6=i

|aij|}, 1 ≤ i ≤ n

Example: B =

















3 1 1

0 4 1

2 2 5

















, λ1, λ2, λ3 ∈ D1 ∪D2 ∪D3, where

D1 = {z | |z − 3| ≤ 2}, D2 = {z | |z − 4| ≤ 1}, D3 = {z | |z − 5| ≤ 4}.

Note that λ1 = 6.5616, λ2 = 3.0000, λ3 = 2.4383.

2 A matrix is said to be diagonally dominant if |aii| >
∑

j 6=i |aij|, ∀ 1 ≤ i ≤ n.

3 A diagonally dominant matrix is invertible.
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Theorem: Let A, P ∈ Rn×n, with P nonsingular, then λ is an eigenvalue of A with
eigenvector x iff λ is an eigenvalue of P−1AP with eigenvector P−1x.

(Proof) Let x be an eigenvector of A corresponding to the eigenvalue λ, that is, Ax = λx.
Then, we have

(P−1AP )(P−1x) = P−1A(PP−1)x = P−1Ax = P−1(λx) = λ(P−1x)

Thus, P−1x is an eigenvector corresponding to the eigenvalue λ of the matrix P−1AP
(according to the definition).

On the other hand,
(P−1AP )(P−1x) = λ(P−1x)

implies that Ax = λx could be achieved based on simple matrix operations.

Theorem: Let A ∈ Rn×n and let λ be an eigenvalue of A with eigenvector x. Then

(a) αλ is an eigenvalue of matrix αA with eigenvector x

(b) λ− µ is an eigenvalue of matrix A− µI with eigenvector x

(c) If A is nonsingular, then λ 6= 0 and λ−1 is an eigenvalue of A−1 with eigenvector
x

Let x be an eigenvector of A corresponding to the eigenvalue λ, that is, Ax = λx. Then

Proof of (a) (αA)x = α(Ax) = α(λx) = (αλ)x.

Proof of (b) (A− µI)x = Ax− µx = λx− µx = (λ− µ)x.

Proof of (c) If A is nonsingular, none of its eigenvalues is zero, otherwise, Ax = λx =
0 · x = 0 and x = A−10 = 0 which implies that x = 0 that contradicts that x is
an eigenvector (of A). Then, Ax = λx implies that 1

λ
x = A−1x. Therefore, 1

λ
is an

eigenvalue of matrix A−1 with eigenvector x.

Definition: A matrix A is similar to B, denote by A ∼ B, iff there exists an invertible
matrix U such that U−1AU = B. Furthermore, a matrix A is orthogonally similar to
B, iff there exists an orthogonal matrix Q such that QtAQ = B.

Theorem: Two similar matrices have the same eigenvalues, i.e., A ∼ B ⇒ λ(A) = λ(B).

Proof Since A ∼ B, we have B = U−1AU for some U , then

|λI−B| = |U−1(λI)U−U−1AU | = |U−1(λI−A)U | = |U−1|·|λI−A|·|U | = |U |−1·|λI−A|·|U |
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Diagonalization of Matrices

Theorem: Suppose A ∈ Rn×n has n linearly independent eigenvectors v1, v2, . . ., vn

corresponding to eigenvalues λ1, λ2, . . ., λn. Let V = [v1, v2, . . . , vn], then
V −1AV = diag[λ1, λ2, . . . , λn].

3 If A ∈ Rn×n has n distinct eigenvalues, then their corresponding eigenvectors are linearly
independent. Thus, any matrix with distinct eigenvalues can be diagonalized.

3 Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Nondiagonalizable Matrices

A =

















2 1 0

0 2 1

0 0 2

















, B =

















1 0 0

1 2 0

−3 5 2

















Diagonalizable Matrices

C =







1 1

1 1





 , D =







2 0

0 2





 , E =

















0 0 −2

1 2 1

1 0 3

















, K =







0 −1

1 0







Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

3 U tAU = Λ or A = UΛU t =
∑n

i=1 λiuiu
t
i, where U is an orthogonal matrix, and

Λ = diag[λ1, λ2, · · · , λn].
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Similarity transformation and triangularization

Schur’s Theorem: ∀ A ∈ Rn×n, ∃ an orthogonal matrix U such that U tAU = T is upper-
∆. The eigenvlues must be shared by the similarity matrix T and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n − 1, and consider A ∈ Rn×n with Ax = λx and ‖x‖2 = 1, then ∃ a Householder
matrix H1 such that H1x = βe1, e.g., β = −‖x‖2, hence

H1AH t
1e1 = H1A(H−1

1 e1) = H1A(β−1x) = H1β
−1Ax = β−1λ(H1x) = β−1λ(βe1) = λe1

Thus,

H1AH t
1 =

















λ | ∗

− − − | − − −

O | A(1)

















Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

3 U tAU = Λ or A = UΛU t =
∑n

i=1 λiuiu
t
i, where U is an orthogonal matrix, and Λ =

diag[λ1, λ2, · · · , λn].

Definition: A symmetric matrix A ∈ Rn×n is nonnegative definite if xtAx ≥ 0 ∀ x ∈ Rn,
x 6= 0.

Definition: A symmetric matrix A ∈ Rn×n is positive definite if xtAx > 0 ∀ x ∈ Rn,
x 6= 0.

Singular Value Decomposition Theorem: Each matrix A ∈ Rm×n can be decom-
posed as A = UΣV t, where both U ∈ Rm×m and V ∈ Rn×n are orthogonal. Moreover,
Σ ∈ Rm×n = diag[σ1, σ2, . . . , σk, 0, . . . , 0] is essentially diagonal with the singular
values satisfying σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

3 A = UΣV t =
∑k

i=1 σiuiv
t
i

Example:

A =







2 −1

−1 2






, B =

















0 1 0

1 0 0

0 0 1

















, C =

















1 1

1 1

0 0
















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A Jacobi Transform (Givens Rotation)

J(i, k; θ) =





























































1 · · · · · · · 0

0
. . . · · · · · ... 0

0 · c · · · s · 0

· ... · . . . · ... ·

0 · −s · · · c · 0

0
... · · · · · . . . 0

· · 0 · · · 0 · 1





























































Jhh = 1 if h 6= i or h 6= k, where i < k

Jii = Jkk = c = cos θ

Jki = −s = − sin θ, Jik = s = sin θ

Let x,y ∈ Rn, then y = J(i, k; θ)x implies that

yi = cxi + sxk

yk = −sxi + cxk

c = xi√
x2

i
+x2

k

, s = xk√
x2

i
+x2

k

,

x =



























1

2

3

4



























,







cos θ

sin θ





 =







1/
√

5

2/
√

5





 , then J(2, 4; θ)x =



























1

√
20

3

0


























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Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such
that

J t
KJ t

K−1 · · ·J t
2J

t
1AJ1J2 · · ·JK−1JK = Λ

where each Ji is orthogonal, so is Q = J1J2 · · ·JK−1JK.

Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one

of the off-diagonal matrix elements. Let A = (aij) be symmetric, then

B = J t(p, q, θ)AJ(p, q, θ), where

brp = carp − sarq for r 6= p, r 6= q

brq = sarp + carq for r 6= p, r 6= q

bpp = c2app + s2aqq − 2scapq

bqq = s2app + c2aqq + 2scapq

bpq = (c2 − s2)apq + sc(app − aqq)

To set bpq = 0, we choose c, s such that

α = cot(2θ) =
c2 − s2

2sc
=

aqq − app

2apq

(1)

For computational convenience, let t = s
c
, then t2 + 2αt − 1 = 0 whose smaller root (in

absolute sense) can be computed by

t =
sgn(α)√

α2 + 1 + |α|
, and c =

1√
1 + t2

, s = ct, τ =
s

1 + c
(2)

Remark

bpp = app − tapq

bqq = aqq + tapq

brp = arp − s(arq + τarp)

brq = arq + s(arp − τarq)
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Algorithm of Jacobi Transforms to Diagonalize A

A(0) ← A

for k = 0, 1, · · · , until convergence

Let |a(k)
pq | = Maxi<j{|a(k)

ij |}

Compute

αk =
a
(k)
qq −a

(k)
pp

2a
(k)
pq

, solve cot(2θk) = αk for θk.

t = sgn(α)√
α2+1+|α|

c = 1√
1+t2

, , s = ct

τ = s
1+c

A(k+1) ← J t
kA

(k)Jk, where Jk = J(p, q, θk)

endfor
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Convergence of Jacobi Algorithm to Diagonalize A

Proof:

Since |a(k)
pq | ≥ |a

(k)
ij | for i 6= j, p 6= q, then

|a(k)
pq |2 ≥ off(A(k))/2N , where N = n(n−1)

2
, and

off(A(k)) =
∑n

i6=j

(

a
(k)
ij

)2
, the sum of square off-diagonal elements of A(k)

Furthermore,

off(A(k+1)) = off(A(k))− 2
(

a(k)
pq

)2
+ 2

(

a(k+1)
pq

)2

= off(A(k))− 2
(

a(k)
pq

)2
, since a(k+1)

pq = 0

≤ off(A(k))
(

1− 1
N

)

, since|a(k)
pq |2 ≥ off(A(k)/2N

Thus

off(A(k+1)) ≤
(

1− 1

N

)k+1

off(A(0)) → 0 as k → ∞

Example:

A =

















4 2 0

2 3 1

0 1 2

















, J(1, 2; θ) =

















c s 0

−s c 0

0 0 1

















Then

A(1) = J t(1, 2; θ)AJ(1, 2; θ) =

















4c2 − 4cs + 3s2 2c2 + cs− 2s2 −s

2c2 + cs− 2s2 3c2 + 4cs + 4s2 c

−s c 1

















Note that off(A(1)) = 2 < 10 = off(A(0)) = off(A)
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Example for Convergence of Jacobi Algorithm

A(0) =



























1.0000 0.5000 0.2500 0.1250

0.5000 1.0000 0.5000 0.2500

0.2500 0.5000 1.0000 0.5000

0.1250 0.2500 0.5000 1.0000



























, A(1) =



























1.5000 0.0000 0.5303 0.2652

0.0000 0.5000 0.1768 0.0884

0.5303 0.1768 1.0000 0.5000

0.2652 0.0884 0.5000 1.0000



























A(2) =



























1.8363 0.0947 0.0000 0.4917

0.0947 0.5000 0.1493 0.0884

0.0000 0.1493 0.6637 0.2803

0.4917 0.0884 0.2803 1.0000



























, A(3) =



























2.0636 0.1230 0.1176 0.0000

0.1230 0.5000 0.1493 0.0405

0.1176 0.1493 0.6637 0.2544

0.0000 0.0405 0.2544 0.7727



























A(4) =



























2.0636 0.1230 0.0915 0.0739

0.1230 0.5000 0.0906 0.1254

0.0915 0.0906 0.4580 0.0000

0.0739 0.1254 0.0000 0.9783



























, A(5) =



























2.0636 0.1018 0.0915 0.1012

0.1018 0.4691 0.0880 0.0000

0.0915 0.0880 0.4580 0.0217

0.1012 0.0000 0.0217 1.0092



























A(6) =



























2.0701 0.0000 0.0969 0.1010

0.0000 0.4627 0.0820 −0.0064

0.0969 0.0820 0.4580 0.0217

0.1010 −0.0064 0.0217 1.0092



























, A(15) =



























2.0856 0.0000 0.0000 0.0000

0.0000 0.5394 0.0000 −0.0000

0.0000 0.0000 0.3750 0.0000

0.0000 −0.0000 0.0000 1.0000


























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Cholesky Algorithm

2 Theorem: Every positive definitive matrix A can be decomposed as A = LLt, where L
is lower −∆.

2 Algorithm: A ∈ Rn×n, A = LLt, A is positive definite and L is lower −∆.

for j = 0, 1, · · · , n− 1

Ljj ←
[

Ajj −
∑j−1

k=0 L2
jk

]1/2

for i = j + 1, j + 2, · · · , n− 1

Lij ←
[

Aij −
∑j−1

k=0 LikLjk

]

/Ljj

endfor

endfor

C =







4 −2

−2 5





 =







2 0

−1 2













2 −1

0 2





 = L1L
t
1

A =

















9 3 −3

3 17 3

−3 3 27

















=

















3 0 0

1 4 0

−1 1 5

































3 1 −1

0 4 1

0 0 5

















= L2L
t
2
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Power of A Matrix and Its Eigenvalues

Theorem: Let λ1, λ2, · · · , λn be eigenvalues of A ∈ Rn×n. Then λk
1, λ

k
2, · · · , λk

n are eigen-
values of Ak ∈ Rn×n with the same corresponding eigenvectors of A. That is,

Avi = λivi → Akvi = λk
i vi ∀ 1 ≤ i ≤ n

Suppose that the matrix A ∈ Rn×n has n linearly independent eigenvectors v1,v1, · · · ,vn

corresponding to eigenvalues λ1, λ2, · · · , λn. Then any x ∈ Rn can be written as

x = c1v1 + c2v2 + · · ·+ cnvn

Then
Akx = λk

1c1v1 + λk
2c2v2 + · · ·+ λk

ncnvn

In particular, if |λ1| > |λj| for 2 ≤ j ≤ n and c1 6= 0, then Akx will tend to lie in the
direction v1 when k is large enough.
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Power Method for Computing the Largest Eigenvalues

Suppose that the matrix A ∈ Rn×n is diagonalizable and that U−1AU = diag(λ1, λ2, · · · , λn)
with U = [v1, v2, · · · , vn] and |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Given u(0) ∈ Rn, then
power method produces a sequence of vectors u(k) as follows.

for k = 1, 2, · · ·

z(k) = Au(k−1)

r(k) = z(k)
m = ‖z(k)‖∞, for some 1 ≤ m ≤ n.

u(k) = z(k)/r(k)

endfor

λ1 must be real since the complex eigenvalues must appear in a ”relatively conjugate pair”.

A =







2 1

1 2






⇒

λ1 = 3

λ2 = 1
, v1 =

1√
2

[

1
1

]

, v2 =
1√
2

[

1
−1

]

Let u(0) =

[

1
0

]

, then u(5) =

[

1.0
0.9918

]

, and r(5) = 2.9756.
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QR Iterations for Computing Eigenvalues

%

% Script File: shiftQR.m

% Solving Eigenvalues by shift-QR factorization

%

Nrun=15;

fin=fopen(’dataMatrix.txt’);

fgetL(fin); % read off the header line

n=fscanf(fin,’%d’,1);

A=fscanf(fin,’%f’,[n n]);

A=A’;

SaveA=A;

for k=1:Nrun,

s=A(n,n);

A=A-s*eye(n);

[Q R]=qr(A);

A=R*Q+s*eye(n);

end

eig(SaveA)

%

% dataMatrix.txt

%

Matrices for computing eigenvalues by QR factorization or shift-QR

5

1.0 0.5 0.25 0.125 0.0625

0.5 1.0 0.5 0.25 0.125

0.25 0.5 1.0 0.5 0.25

0.125 0.25 0.5 1.0 0.5

0.0625 0.125 0.25 0.5 1.0

4 for shift-QR studies

2.9766 0.3945 0.4198 1.1159

0.3945 2.7328 -0.3097 0.1129

0.4198 -0.3097 2.5675 0.6079

1.1159 0.1129 0.6097 1.7231
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Norms of Vectors and Matrices

Definition: A vector norm on Rn is a function

τ : Rn → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(x) > 0 ∀ x 6= 0, τ(0) = 0

(2) τ(cx) = |c|τ(x) ∀ c ∈ R, x ∈ Rn

(3) τ(x + y) ≤ τ(x) + τ(y) ∀ x,y ∈ Rn

Hölder norm (p-norm) ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1.

(p=1) ‖x‖1 =
∑n

i=1 |xi| (Mahattan or City-block distance)

(p=2) ‖x‖2 = (
∑n

i=1 |xi|2)1/2
(Euclidean distance)

(p=∞) ‖x‖∞ = max1≤i≤n{|xi|} (∞-norm)
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Definition: A matrix norm on Rm×n is a function

τ : Rm×n → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(A) > 0 ∀ A 6= O, τ(O) = 0

(2) τ(cA) = |c|τ(A) ∀ c ∈ R, A ∈ Rm×n

(3) τ(A + B) ≤ τ(A) + τ(B) ∀ A, B ∈ Rm×n

Consistency Property: τ(AB) ≤ τ(A)τ(B) ∀ A, B

(a) τ(A) = max{|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

(b) ‖A‖F =
[

∑m
i=1

∑n
j=1 a2

ij

]1/2
(Fröbenius norm)

Subordinate Matrix Norm: ‖A‖ = max‖x‖6=0{‖Ax‖/‖x‖}

(1) If A ∈ Rm×n, then ‖A‖1 = max1≤j≤n (
∑m

i=1 |aij|)

(2) If A ∈ Rm×n, then ‖A‖∞ = max1≤i≤m

(

∑n
j=1 |aij|

)

(3) Let A ∈ Rn×n be real symmetric, then ‖A‖2 = max1≤i≤n|λi|, where λi ∈ λ(A)
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Theorem: Let x ∈ Rn and let A = (aij) ∈ Rn×n. Define ‖A‖1 = Sup‖u‖1=1{‖Au‖1}

Proof: For ‖u‖1 = 1,

‖A‖1 = Sup{‖Au‖1} =
n
∑

i=1

|
n
∑

j=1

aijuj| ≤
n
∑

j=1

n
∑

i=1

|aij||uj| =
n
∑

j=1

|uj|
n
∑

i=1

|aij|

Then

‖A‖1 ≤ Max1≤j≤n{
n
∑

i=1

|aij|}
n
∑

j=1

|uj| = Max1≤j≤n{
n
∑

i=1

|aij|}

On the other hand, let
∑n

i=1 |aik| = Max1≤j≤n{
∑n

i=1 |aij|} and choose u = ek, which
completes the proof.

Theorem: Let A = [aij] ∈ Rm×n, and define ‖A‖∞ = Max‖u‖∞=1{‖Au‖∞}.

Show that ‖A‖∞ = Max1≤i≤m







n
∑

j=1

|aij|






Proof: Let
n
∑

j=1

|aKj| = Max1≤i≤m







n
∑

j=1

|aij|






, for any x ∈ Rn with ‖x‖∞ = 1, we have

‖Ax‖∞ = Max1≤i≤m

{

|∑n
j=1 aijxj|

}

≤ Max1≤i≤m

{

∑n
j=1 |aij| · |xj|

}

≤Max1≤i≤m

{

∑n
j=1 |aij|‖x‖∞

}

≤ Max1≤i≤m

{

∑n
j=1 |aij|

}

=
∑n

j=1 |aKj|

In particular, if we pick up y ∈ Rn such that yj = sign(aKj), ∀ 1 ≤ j ≤ n, then
‖y‖∞ = 1, and ‖Ay‖∞ =

∑n
j=1 |aKj|, which completes the proof.
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Theorem: Let A = [aij] ∈ Rn×n, and define ‖A‖2 = Max‖x‖2=1{‖Ax‖2}. Show that

‖A‖2 =
√

ρ(AtA) =
√

maximum eigenvalue of AtA (spectral radius)

(Proof) Let λ1, λ2, · · · , λn be eigenvalues and their corresponding unit eigenvectors
u1, u2, · · · , un of matrix AtA, that is,

(AtA)ui = λiui and ‖ui‖2 = 1 ∀ 1 ≤ i ≤ n.

Since u1, u2, · · · , un must be an orthonormal basis based on spectrum decomposition

theorem, for any x ∈ Rn, we have x =
n
∑

i=1

ciui. Then

‖A‖2 = Max‖x‖2=1{‖Ax‖2}

=
√

Max‖x‖2=1{‖Ax‖22}

=
√

Max‖x‖2=1{xtAtAx}

=

√

√

√

√Max‖x‖2=1|
n
∑

i=1

λic
2
i |

=
√

Max1≤j≤n{|λj|}
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A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside
Taiwan move out in each year. Let yk and zk be the population at the end of the k − th
year, outside Taiwan and inside Taiwan, respectively. Then we have







yk

zk





 =







0.9 0.2

0.1 0.8













yk−1

zk−1





 ⇒ λ1 = 1.0, λ2 = 0.7







yk

zk





 =







0.9 0.2

0.1 0.8







k 





y0

z0





 =
1

3







2 1

1 −1













1k 0

0 (0.7)k













1 1

1 −2













y0

z0







2 A Markov matrix A is nonnegative with each colume adding to 1.

(a) λ1 = 1 is an eigenvalue with a nonnegative eigenvector x1.

(b) The other eigenvalues satisfy |λi| ≤ 1.

(c) If any power of A has all positive entries, and the other |λi| < 1. Then Aku0

approaches the steady state of u∞ which is a multiple of x1 as long as the projection
of u0 in x1 is not zero.

3 Check Perron-Fröbenius theorem in Strang’s book.
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eA and Differential Equations

♣ eA = I + A
1!

+ A2

2!
+ · · ·+ Am

m!
+ · · ·

♣ du
dt

= −λu ⇒ u(t) = e−λtu(0)

♣ du
dt

= −Au =







−2 1

1 −2





u ⇒ u(t) = e−tAu(0)

♣ A = UΛU t for an orthogonal matrix U , then

eA = UeΛU=Udiag[eλ1 , eλ2, . . . , eλn ]U t

♣ Solve x′′′ − 3x′′ + 2x′ = 0.

Let y = x′, z = y′ = x′′, and let u = [x, y, z]t. The problem is reduced to solving

u′ = Au =

















0 1 0

0 0 1

0 −2 3

















u

Then

u(t) = etAu(0) =



















1√
21

1√
3

1

2√
21

1√
3

0

4√
21

1√
3

0



































e2t 0 0

0 et 0

0 0 1

































0 −2.2913 2.2913

0 3.4641 −1.7321

1 −1.5000 0.5000

















u(0)
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Problems Solved by Matlab

Let A, B, H, x, y, u, b be matrices and vectors defined below, and H = I − 2uut

A =







2 1 1
4 6 0
−2 7 2





 , B =







−3 1 0
1 −3 0
0 0 3





 , u =











1/2
1/2
1/2
1/2











, b =







6
2
−5





 , x =











1
1
1
1











, y =











1
1
−1
−1











1. Let A=LU=QR, find L, U; Q, R.

2. Find determinants and inverses of matrices A, B, and H.

3. Solve Ax = b, how to find the number of floating-point operations are required?

4. Find the ranks of matrices A, B, and H.

5. Find the characteristic polynomials of matrices A and B.

6. Find 1-norm, 2-norm, and ∞-norm of matrices A, B, and H.

7. Find the eigenvalues/eigenvectors of matrices A and B.

8. Find matrices U and V such that U−1AU and V −1BV are diagonal matrices.

9. Find the singular values and singular vectors of matrices A and B.

10. Randomly generate a 4×4 matrix C with 0 ≤ C(i, j) ≤ 9.


