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Definition and Examples

Let A € R™™. If 3 v # 0 such that Av = Av, X is called an eigenvalue of matrix A,
and v is called an eigenvector corresponding to (or belonging to) the eigenvalue A. Note
that v is an eigenvector implies that av is also an eigenvector for all a # 0. We define the
Eigenspace()) as the vector space spanned by all of the eigenvectors corresponding to the
eigenvalue \.

Ax =X x = (M —-A)x=0,x#0 = det(\] —A) = P(\) =0.

Examples:
(2 0] [ 1] [0
1. A= ,)\1:2,111: ,)\2:17112:
0 1 | 0 ] |1
(2 1] (1] [ —1 ]
2. A= ,)\1:2,111: ,)\2:17112:
0 1 | 0 ] |1 ]
(3 1] (1] [ —1
3. A= s A =4, 0, = , A =2, up =
1 3] | 1] | 1]
[0 —1] 1 J
4. A= a)\1:j7u1: a)\2:_j7u2: ,J=+v—L
1 0 | J 1
_3 - % 0
5 B= ,then)\1:3,u1= ;)\2__17112:
2
8 1| 2 1
- 1 1
3 —1 V2 V2
6. C = ,thel’lT1:4,V1: 77'2—2,"’2:
-1 3 =1 -
L V2 V2

Note that |[u;]|l2 = 1 and ||v;||2 = 1 for i = 1,2. Denote U = [uy, ug] and V' = [vy, vo|, then

3 0 40
U~'BU = L VoV =
0 -1 0 2

Note that Vi =V~ but U # UL
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2?21 )\j = 2?21 a; and H?:1 >‘j = det(A)

Let A € R™", then P(\) = det(A] — A) is called the characteristic polynomial of matrix
A.

O Fundamental Theorem of Algebra

A real polynomial P(\) = X\"+a, 1 A" '+ -+ag of degree n has n roots {\1, Ao, -+, A\, }
such that

PA)=A=X)A=X)--(A=X\,) =\"— (é >\Z-> AT (=) (f[ )\i>

i=1

e YU N = Y ay; = tr(A) (calledthetraceof A)
o [I', A = det(A)

O Gershgorin’s Disk Theorem

Every eigenvalue of matrix A € R™*" lies in at least one of the following disks

Di={z ||z —aul <Y layl}, 1<i<n
J#i
3 11
Example: B=10 4 1|, A,X,A3€ DiUDyU D3, where

2 25

Di={z| |z=3[ <2}, Do={z| |z =4[ <1}, Dy ={z]| [z = 5[ <4}.
Note that A\; = 6.5616, A, = 3.0000, Az = 2.4383.

O A matrix is said to be diagonally dominant if |a;| > 3,4 |ai;|, V 1 <i < n.

< A diagonally dominant matrix is invertible.
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Theorem: Let A, P € R™", with P nonsingular, then A\ is an eigenvalue of A with
eigenvector x iff \ is an eigenvalue of P~!AP with eigenvector P~!x.

(Proof) Let x be an eigenvector of A corresponding to the eigenvalue A, that is, Ax = Ax.
Then, we have

(P'AP)(P'x) = P'A(PP H)x = P 'Ax = P7'(\x) = A\(P " 'x)

Thus, P~'x is an eigenvector corresponding to the eigenvalue \ of the matrix P~tAP
(according to the definition).

On the other hand,
(P'AP)(P'x) = M(P™'x)

implies that Ax = Ax could be achieved based on simple matrix operations.
Theorem: Let A € R™ "™ and let A be an eigenvalue of A with eigenvector x. Then
(a) a is an eigenvalue of matrix A with eigenvector x
(b) A — u is an eigenvalue of matrix A — pI with eigenvector x

(c) If A is nonsingular, then A # 0 and A™! is an eigenvalue of A~! with eigenvector
X

Let x be an eigenvector of A corresponding to the eigenvalue A, that is, Ax = Ax. Then
Proof of (a) (a«A)x = a(Ax) = a(Ax) = (aM)x.
Proof of (b) (A — pul)x = Ax — ux = Ax — ux = (A — p)x.

Proof of (c) If A is nonsingular, none of its eigenvalues is zero, otherwise, Ax = Ax =
0-x =0 and x = A'0 = 0 which implies that x = 0 that contradicts that x is
an eigenvector (of A). Then, Ax = Ax implies that %X = A~ !x. Therefore, + is an

)
eigenvalue of matrix A~! with eigenvector x.

Definition: A matrix A is similar to B, denote by A ~ B, iff there exists an invertible
matrix U such that U AU = B. Furthermore, a matrix A is orthogonally similar to
B, iff there exists an orthogonal matrix ) such that Q*AQ = B.

Theorem: Two similar matrices have the same eigenvalues, i.e., A ~ B = A(A) = A(B).

Proof Since A ~ B, we have B = U AU for some U, then
IM—=B| = U \NU-UTAU| = [U Y AN-A)U| = |[U | IMN[-A|-|U| = |U|" M =A|-|U]|
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Diagonalization of Matrices

Theorem: Suppose A € R™™ has n linearly independent eigenvectors vy, vo, ..., Vv,
corresponding to eigenvalues A, Ao, ..., A,. Let V = [vq, vy, ..., v,], then
V_lAV = diag[)\l, )\2, ceuy )\n]

O If A € R™*™ has n distinct eigenvalues, then their corresponding eigenvectors are linearly
independent. Thus, any matrix with distinct eigenvalues can be diagonalized.

< Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Nondiagonalizable Matrices

210 1 00
A=10 2 1|, B= 1 20
00 2 -3 5 2
Diagonalizable Matrices
00 -2
11 2 0 0 -1
C= , D= , E=112 1|, K=
11 0 2 1 0
10 3

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

O U'AU = A or A = UAU' = Y1, wul, where U is an orthogonal matrix, and
A = diag[A1, Aoy -0, Al
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Similarity transformation and triangularization

Schur’s Theorem: V A € R™*", 3 an orthogonal matrix U such that U AU = T is upper-
A. The eigenvlues must be shared by the similarity matrix 7" and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n — 1, and consider A € R™" with Ax = Ax and ||x||s = 1, then 3 a Householder

matrix H; such that Hix = fe;, e.g., = —||x||2, hence
HlAerl = HlA(Hl_lel) = HlA(ﬁ_IX) = Hlﬂ_lAX = /6_1)\(H1X) = ﬁ_l)\(ﬁel) = )\el
Thus,
A | *
HAH, = | ——— | ———
0] | A

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

O UPAU = A or A = UAU" = Y | \juyul, where U is an orthogonal matrix, and A =
diag[)\l, )\2, R )\n]

Definition: A symmetric matrix A € R™™" is nonnegative definite if xX'Ax >0V x € R",

x #£ 0.

Definition: A symmetric matrix A € R"™*" is positive definite if x!Ax > 0V x € R",

x # 0.

Singular Value Decomposition Theorem: Each matrix A € R™*" can be decom-
posed as A = UX V!, where both U € R™™ and V € R™" are orthogonal. Moreover,
Y € R = diagloy,09,...,040,...,0] is essentially diagonal with the singular
values satisfying o1 > 09 > ... > g > 0.

O A= UZVt = f:l O'Z'llz‘Vg

Ezxample:



A Jacobi Transform (Givens Rotation)

1 0
0 0
0 c s 0
J(i,k;0) =
0 -5 - c 0
0 0
I 0 0 I

Jpn =11 h £ 1 or h # k, where i < k
Jiyi = Jy = ¢ = cos
Jpi = —s = —sinb, J;, = s =sinf
Let x,y € R", then y = J(i, k; #)x implies that
Yi = CTi + STy,

Y = —ST; + cTg

_ x; _ Ty
C = L S =
2.2 2, 2
\/mi+xk \/xi+mk

1
2 cos 1/V5

A
_4_

, then J(2,4;0)x =

7
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Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such
that
Je T e ETEAN Ty - T g = A

where each J; is orthogonal, sois Q = J1Jo- - Jx_1Jk.
Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one

of the off-diagonal matrix elements. Let A = (a;;) be symmetric, then
B = Jp,q,0)AJ(p,q,0), where
byp = carp —sa,q for r#p, r#q
byg = sap, +carq for r#p, r#q
bpp = CPayy + s%ag, — 25cay,

— &2 2
byg = 87 app + C*agq + 25cap,

bpg = (62 - 32)apq + sc(apy — aqq)

To set b,, = 0, we choose ¢, s such that

2 .2 -
a = cot(20) = & 2803 - “‘”2 - o (1)
Pq

For computational convenience, let ¢ = 2, then t2 + 2at — 1 = 0 whose smaller root (in
absolute sense) can be computed by
sgn(a 1 S
gnla) and c= =ct, T=

t: TS . | )
va+1+|of V1412

(2)

bpp = app — tapg
bgg = gq + Lay,
brp = Qrp — S(arg + Tarp)

brqg = Qrg + S(Arp — Tarq)



Algorithm of Jacobi Transforms to Diagonalize A

A A
for k=0,1,---, until convergence

Let |a®)| = Maz;<;{|al}|}

Compute
NOENO)
ay = ~L#2 solve cot(20y) = ay, for 6.
20apq
{_ _sgnlo)
VaZ+1+|al

— 1 —
C_W’ ,S—Ct

_s_
14c

AR+ l]]f:A(k)Jk, where J, = J(p, q, 0)

T =

endfor
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Convergence of Jacobi Algorithm to Diagonalize A

Proof:
Since \agf])\ > |a§f)| for i # j, p # q, then
a2 > of f(A®)) /2N, where N = @, and

2
of F(A®) =37, (ag?)) , the sum of square off-diagonal elements of A®)

Furthermore,

Off(A(k—i-l)) _ off(A(k)) _9 (OLI(D,Z))2 ) (agz—i-l))Q

= of f(A®) -2 (a(kz))2 . since a}()l;—kl) —0

< of f(AW) (1 - %) ; Since|a1(g’;)|2 > of f(A® /2N

Thus .
1
of f(A®TD)) < (1_N> of f(A?D) — 0 as k — oo

Example:

4 2 0 c s 0

A=12 3 1|, J1,2,0)=| —s ¢ O

01 2 0 01
Then

4¢* — 4es + 352 2c2 +cs — 257 —s
AW = JH(1,2,0)AT(1,2;0) = | 22+ ¢s —25> 3¢ +4es+ 45> ¢

—S c 1

Note that of f(AY) =2 <10 = of f(A©) = of f(A)
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Example for Convergence of Jacobi Algorithm

[ 1.0000 0.5000 0.2500 0.1250 ] [ 1.5000 0.0000 0.5303 0.2652
0.5000 1.0000 0.5000 0.2500 0.0000 0.5000 0.1768 0.0884
A0 — : A —
0.2500 0.5000 1.0000 0.5000 0.5303 0.1768 1.0000 0.5000
| 0.1250 0.2500 0.5000 1.0000 | | 0.2652 0.0884 0.5000 1.0000 |
[1.8363 0.0947 0.0000 0.4917 ] [2.0636 0.1230 0.1176 0.0000 |
0.0947 0.5000 0.1493 0.0884 0.1230 0.5000 0.1493 0.0405
AR — : AB) —
0.0000 0.1493 0.6637 0.2803 0.1176 0.1493 0.6637 0.2544
| 0.4917 0.0884 0.2803 1.0000 | | 0.0000 0.0405 0.2544 0.7727 |
[ 2.0636 0.1230 0.0915 0.0739 | [ 2.0636 0.1018 0.0915 0.1012 |
0.1230 0.5000 0.0906 0.1254 0.1018 0.4691 0.0880 0.0000
AW — . AB) =
0.0915 0.0906 0.4580 0.0000 0.0915 0.0880 0.4580 0.0217
| 0.0739 0.1254 0.0000 0.9783 | | 0.1012 0.0000 0.0217 1.0092 |
[ 2.0701  0.0000 0.0969 0.1010 | [ 2.0856 0.0000 0.0000 0.0000
0.0000 0.4627 0.0820 —0.0064 0.0000 0.5394 0.0000 —0.0000
A6) — : A5 —
0.0969 0.0820 0.4580 0.0217 0.0000  0.0000 0.3750  0.0000
| 0.1010 —0.0064 0.0217 1.0092 | | 0.0000 —0.0000 0.0000 1.0000
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Cholesky Algorithm

O Theorem: Every positive definitive matrix A can be decomposed as A = LL!, where L
is lower — A.

O Algorithm: A € R™", A= LL', A is positive definite and L is lower — A.
forj=0,1,---,n—1
. 1/2
Lij — |Aj—Sis L3
fori=75+1,74+42,---,n—1

Lij « {Az‘j - Yio Lz’ijk} /L

endfor
endfor

4 =2 2 0 2 -1

C - - - LlLi
-2 5 -1 2 0 2

9 3 —-3] 3 00][3 1 —1

A= 3 17 3 = 1 40 0 4 1 = Lth2
| -3 3 27 | -1 1. 5]100 5




83

Power of A Matrix and Its Eigenvalues

Theorem: Let \j, Ay, -+, A, be eigenvalues of A € R™™. Then \¥ \E ... \F are eigen-
values of A¥ € R™™ with the same corresponding eigenvectors of A. That is,

Suppose that the matrix A € R™™" has n linearly independent eigenvectors v, vy, -+, v,
corresponding to eigenvalues Ai, Ao, - -+, \,. Then any x € R" can be written as
X =CV]+CVy+---4cC,Vy,

Then
AFx = Neeyvy + Meovy + -+ Meepvy,

In particular, if [A\;] > |\ for 2 < j < n and ¢; # 0, then A"x will tend to lie in the
direction v; when k is large enough.



84

Power Method for Computing the Largest Eigenvalues

Suppose that the matrix A € R™*" is diagonalizable and that Ut AU = diag(Ai, Ag, - -+, \n)
with U = [vi, Vo, ---, vu] and |[A\y| > [Xo| > [X3| > --- > |\,]. Given u® € R", then

power method produces a sequence of vectors ul® as follows.
fork=1,2,---
zF) = Auk-1
rk) = 20 = ||z)||, for some 1 < m < n.

ul®) = 7 /7 ®)
endfor

A1 must be real since the complex eigenvalues must appear in a “relatively conjugate pair”.

= ) 1= = ) 2 = T =
1 2 Mo =1 V2 [ 1 V2 [ -1

Let u®

1 1.0
(6) — (5) _
l 0 ], then u l 0.9918 ], and r 2.9756.



QR Iterations for Computing Eigenvalues

b
% Script File: shiftQR.m
% Solving Eigenvalues by shift-QR factorization
b
Nrun=15;
fin=fopen(’dataMatrix.txt’);
fgetL(fin); % read off the header line
n=fscanf (fin,’%d’,1);
A=fscanf (fin,’%f’,[n nl);
A=A’ ;
SaveA=A;
for k=1:Nrun,
s=A(n,n);
A=A-sxeye(n);
[Q RI=qr(A);
A=RxQ+s*eye(n) ;
end
eig(SaveA)
o
% dataMatrix.txt
b
Matrices for computing eigenvalues by QR factorization or shift-QR
5

.0 0.5 0.25 0.125 0.0625
.5 1.0 0.5 0.26 0.125
.26 0.5 1.0 0.5 0.25
.126 0.26 0.5 1.0 0.5
.0625 0.125 0.256 0.5 1.0

for shift-QR studies
.9766 0.3945 0.4198 1.1159
.3945 2.7328 -0.3097 0.1129
.4198 -0.3097 2.5675 0.6079
.1159 0.1129 0.6097 1.7231

R O ONP OO O O -
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Norms of Vectors and Matrices

Definition: A vector norm on R" is a function
T: R - R"={x>0/z€R}
that satisfies
(1) 7(x) >0 Vx#0, 7(0) =0
(2) 7(cx) =|c|r(x) Vce R, x€ R"

B) Tx+y)<7(x)+7(y) VX,y € R"

Hélder norm (p-norm) ||x||, = (X, z:[P)? for p > 1.

(p=1) |[|x|l1 = XX, |zi| (Mahattan or City-block distance)

(pP=2) [|x]2= (1, \xiP)l/Q (Euclidean distance)

(p=00) [[%[|oe = mazi<i<n{|wi|} (00-norm)

86



Definition: A matrix norm on R"™*" is a function
T R — RY={z>0|z€R}
that satisfies
(1) 7(4) >0 VA #£0,7(0) =0
(2) 7(cA) =|c|7(A) YV ce R, Ae R™"

38) T(A+B)<71(A)+7(B) YA BeR™"
Consistency Property: T(AB) < 7(A)7(B) V A, B

(a) 7(A) =max{|a;| |1 <i<m, 1<j<n}

(b) ||Allr = [Zizl > afj} (Frébenius norm)

Subordinate Matrix Norm: ||A| = max|xjo0{||Ax||/||x]|}
(1) If A e ™", then [|Ally = mazi<j<n (XL ai])

(2) If Ae R™™, then ||Al = mazi<icm (Z?Zl ‘az’j‘)

(3) Let A € R™" be real symmetric, then ||A||s = maxi<;<,|\i|, where A\; € A(A)
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Theorem: Let x € R" and let A = (a;;) € R™™. Define ||A||; = Supju|,=1{]|Au/l:}

Proof: For ||ul|; =1,

[Ally = Sup{[|Aull1} = > > aiuy] <D0 laillul =D u| D lai]
j=1i=1

i=1 j=1 j=1 i=1

Then . . .
|A[l1 < Mazi<j<n{) lag]} D |uj] = Mazi<j<n{)  lai;|}
i=1 j=1 i=1

On the other hand, let >, |aix| = Mazi1<j<n{> - |a;;|} and choose u = e, which
completes the proof.

Theorem: Let A = [a;;] € R™*", and define ||A|| = Maz |y =1{|lAuls}-

Show that ||A]lee = Mazi<i<m {Z‘aij‘}

j=1

Proof: Let Y |ak,| = Mazi<i<m {ZW\}, for any x € R™ with ||x[|oc = 1, we have

j=1 Jj=1
A%l = Mazi<i<m {I 21 %’%’\}
S Ma$1§i§m {Z?:l ‘Clij‘ . |«T]|} S Maxlgiﬁm {E?:l |a2JH|X”OO}

< Mazicicm { S layl } = 02 Jax;|

In particular, if we pick up y € R" such that y; = sign(ak;), V1 < j < n, then
[¥lloo = 1, and [|Ay|loo = 3j-; |ax;|, which completes the proof.
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Theorem: Let A = [a;;] € R"*", and define ||Al; = Max|x,=1{]|Ax]||2}. Show that

|Alle = \/p(AtA) = \/mam'mum eigenvalue of A*A (spectral radius)

(Proof) Let Aq, Ay, ---, A, be eigenvalues and their corresponding unit eigenvectors
u;, Uy, ---, u, of matrix A*A, that is,

(AtA>U.Z' = )\Z'llz' and HUZHQ =1Vl S 1 S n.

Since uy, up, ---, u, must be an orthonormal basis based on spectrum decomposition
n
theorem, for any x € R", we have x = Zcz-uz-. Then

=1

1ALl = Maz =1 {[| Ax|}

= \/Ma$||x||2:1{HAX”§}

=/ Maz,— {x' A'Ax}

n
— \J Ma{lj||x||2:1|z )\1022‘
=1

— [ Mazigedin])
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A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside
Taiwan move out in each year. Let y, and z, be the population at the end of the k — th
year, outside Taiwan and inside Taiwan, respectively. Then we have

Yk _09 0.2 Yk—1
= = )\1:1.0, /\2:07
Zk _01 08 Zlk—1
n 09 0271 v f2 1yt o 1 177 v
7 01 08] | =] [t —1]lo onr]l1 —2]]| %

O A Markov matrix A is nonnegative with each colume adding to 1.
(a) A; =1 is an eigenvalue with a nonnegative eigenvector x;.
(b) The other eigenvalues satisfy |\;| < 1.

(c) If any power of A has all positive entries, and the other |\;| < 1. Then A*u,
approaches the steady state of u,, which is a multiple of x; as long as the projection
of ug in x; is not zero.

<& Check Perron-Frobenius theorem in Strang’s book.



91

e and Differential Equations

*@A:[+%+A2_!2+...+A_m+...

&

[ )

&

m!

B— Xy = u(t) =eMu(0)

A = UAU! for an orthogonal matrix U, then

e = UrU=Udiag[e, e, ... et U

& Solve 2" — 32" + 22’ = 0.

" t

Let y = 2/, z =y = 2", and let u = [z,y, z]". The problem is reduced to solving

0 1 0
u = Au = 0 0 1 |u
0 -2 3

Then

1 et 0 0 0 —2.2913 2.2913

al-

0 e 0|0 34641 —1.7321 | u(0)

0 0 0 1 1 —1.5000 0.5000

s
—~
~
~—
|
mﬁ-
S
o
—
=)
~—
|
S
= = =
al-
=)

al-
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Problems Solved by Matlab

Let A, B, H, x, y, u, b be matrices and vectors defined below, and H = I — 2uu’

—2

1
7

1
0|, B=
2

-3
1
0

1 0
-3 0
0 3

. Let A=LU=QR, find L, U; Q, R.

Y

u=

1/2 6 1
1/2 _ 1 -
1/2 ) b_ _25 , X = 1 y ¥ =
1/2 1

Find determinants and inverses of matrices A, B, and H.

Solve Ax = b, how to find the number of floating-point operations are required?

Find the ranks of matrices A, B, and H.

Find the characteristic polynomials of matrices A and B.

Find 1-norm, 2-norm, and oo-norm of matrices A, B, and H.

Find the eigenvalues/eigenvectors of matrices A and B.

Find matrices U and V such that U™ AU and V!BV are diagonal matrices.

. Find the singular values and singular vectors of matrices A and B.

. Randomly generate a 4x4 matrix C with 0 < C(7,7) < 9.



