2004 IC/CAD Contest

Problem 3: Verilog Expression Evaluation

Source: Springsoft Inc.
Updated: 2004/03/11
I. Introduction

In current HDL-based design flow, we usually use the HDL simulator to run the simulation. Based on the simulation results, we will do a lot of analysis to verify the correctness of the designs. For the convenience of post simulation analysis, we may dump all signals’ value changes into the dump file and check them later after simulation is finished. Because the simulation time for a huge design is very long, we may only dump a part of signals instead of all signals to reduce the simulation time and the size of the dump file. However, if we are going to check a signal which doesn’t exist in the dump file, we have to include this signal in the dumpling list and re-run the simulation again, which requires a long simulation again. In this situation, if we know the value of the checked signal can be calculated from other existing signals in the dump file, we can directly calculate the value changes of this signal according to the existing records in the dump file to avoid a new simulation run. Therefore, an efficient tool that can perform efficient evaluations from a signal expression would be very useful for post simulation analysis.

The target of this problem is to develop an efficient tool that can evaluate given signal expressions from existing records in the given dump file. For example, given a Verilog expression “a = b & c”, you have to read the value changes of signals “b” and “c” from the given dump file, evaluate all the value changes of signal “a”, and output these value changes into a new dump file. It should be noted that a legal Verilog expression can be very complex. There are a lot of different operators in Verilog syntax which can be combined to form a complex expression. Those signals appear at both left-hand-side and right-hand-side of the expression can be single-bit or multiple-bit (i.e. bit-vector). The logic values of all signals can be “0”, “1”, “X”, and “Z”. You may have to develop an efficient parser for reading the given expression first. Furthermore, because the format of the dump files are also defined clearly in the Verilog standard, which is called the VCD (value change dump) file format, you also have to develop a parser to understand the dump file and prepare the output file that is compatible to the VCD standard.

II. Input/Output Specification

There are two input files for this tool, which are the original VCD file and the Verilog expressions to be evaluated. There is only one output file for this tool, which is a VCD file that records the evaluation results of those expressions. Therefore, the usage of this tool is suggested as follows, where “t1.vcd” is the original VCD file, “t1.cmd” contains the Verilog expressions to be evaluated, and “result.vcd” is the output VCD file. The explanations about those file formats are individually given in the following descriptions.

vlog_exp_evaluator -vcd t1.vcd -cmd t1.cmd -out result.vcd
1. File format for the Verilog expressions to be evaluated :

In this file, the Verilog expressions to be evaluated are listed line by line. Each line represents one expression and multiple expressions are allowed in a single file to be evaluated simultaneously. Below is a simple example for the contents of this file.

ex1 = YY - Y_C[0] + OE

ex2[5:0] = Y_C_0 % Y_POS_C

ex3 = (DCLK2+RESULT) >= YY

ex4[7:0] = ~RESULT & (Y_POS_Y | Y_POS_C)

ex5[3:0] = Y_POS_C[7:4] ^ Y_POS_Y[3:0]

ex6 = (&Y_POS_C) && (~&Y_POS_Y) || (|RESULT)

ex7[8:0] = (RESULT << Y_INDEX_0) | (YY >> Y_INDEX)

ex8[4:0] = (^RESULT) ? (Y_INDEX_0 + Y_INDEX) : (Y_POS_Y - Y_POS_C)
All legal Verilog operators [1] listed in Table 4-1 of IEEE 1364-1995 Verilog standard should be supported except concatenation (ex: {a,b}) and division (ex: a/b) to be compatible with Novas Debussy. However, in order to easily decide the bit width of whole expression, we used the bit width of the left-hand-side signal as its bit width. (ex: “a[5:0]” is 6 bits, “a” is one bit, “a[1]” is one bit).

2. VCD file format :

The input file for the recorded value changes and the output file for the evaluation results are required to be compatible with the VCD format [2, 3] defined in the IEEE 1364-1995 Verilog standard. Basically, the VCD format is a simple ASCII format that can record two properties of the selected signals during simulation: changing at what time and changed to which value. Figure 1 gives a simple example of a short VCD file and its corresponding waveforms.

[image: image1.emf]$date

March 3, 2002 10:08:08

$end

$version

VERILOG-XL 3.10.p001

$end

$timescale

1ns

$end

$scope module test $end

$var reg 1 ! X $end

$var reg 1 " Z1 $end

$var reg 1 # Z2 $end

$var reg 1 $ Z3 $end

$upscope $end

$enddefinitions $end

X

10

Z1

Z2

Z3

20 30 40 50 0

10ns

10ns

3ns

2ns

5ns

$date

March 3, 2002 10:08:08

$end

$version

VERILOG-XL 3.10.p001

$end

$timescale

1ns

$end

$scope module test $end

$var reg 1 ! X $end

$var reg 1 " Z1 $end

$var reg 1 # Z2 $end

$var reg 1 $ Z3 $end

$upscope $end

$enddefinitions $end

$dumpvars

0!

0"

0#

0$

$end

#10

1!

#20

0!

1"

1#

1$

#30

1!

0"

0#

0$

#33

0!

#35

1!

#40

0!

1"

#43

0"

#45

1"

1$

#50

0"

0$

no. of bits

symbol for

this variable

variable name

symbol

new value

changing

time

Figure 1 : A simple VCD file and its corresponding waveform.

It should be noted that the symbols for the variables recorded in the VCD file are not necessary to be single-bit. If there are too many variables in the VCD file, multiple-bit symbols may be used to identify different signals. Actually, in the given test cases, we will record many variables, but not all you want, in the VCD file to produce a huge dump file. You have to try your best to handle such a huge file more efficiently. Most importantly, do not forget that there are four possible logic values, “0”, “1”, “X”, and “Z”, for each variable. Be sure to handle those 4-valued logic values correctly.

In order to simplify the problem, the recorded signals are assumed to be all flattened, i.e., only one module exists in the VCD file as shown in Figure 1, although the original VCD format supports hierarchical representations of the signals in different modules. Therefore, you do not have to handle hierarchies in the VCD file. While specifying the expressions to be evaluated, we will not specify full path of each signal, either.

III. Problem Statement

The target of this problem is to develop an efficient tool that can evaluate given signal expressions from existing records in the given dump file and generate a dump file to record the evaluation results. Note that all public domain packages which are used in the program must be clearly referenced in the final report.
IV. Language/Platform

1. Language: C or C++.

2. Platform: UNIX environment
V. Evaluation

The score will be given based on
1. Correctness of the evaluation results;

2. Computation time and memory consumption;

The correctness of evaluation results will be checked using Novas Debussy. Be sure to be compatible with what the tool supports. The computation time and memory consumption will be checked in UNIX environment using the batch mode of your tool as suggested at the end of the “input/output specification” section to have a fair comparison. Be sure to provide such a batch mode for evaluation.

VII. Questions
Please report any questions regarding this problem to cad@cis.nctu.edu.tw with the email subject “CAD Contest: Problem 3.” Your question(s) will be answered in two weeks, and the Q&A’s will be posted at the contest web site.

References

[1] Chapter 4, IEEE Standard Hardware Description Language Based on the Verilog® Hardware Description Language (IEEE Standard 1364), 1995.
(can be downloaded from the IEEE digital library, Xplore)
[2] Chapter 15, IEEE Standard Hardware Description Language Based on the Verilog® Hardware Description Language (IEEE Standard 1364), 1995.
[3] Cadence’s Verilog-XL reference manual.
_1134721038.ppt

$date

 March 3, 2002 10:08:08

$end

$version

 VERILOG-XL 3.10.p001

$end

$timescale

 1ns

$end

$scope module test $end

$var reg 1 ! X $end

$var reg 1 " Z1 $end

$var reg 1 # Z2 $end

$var reg 1 $ Z3 $end

$upscope $end

$enddefinitions $end

$date

 March 3, 2002 10:08:08

$end

$version

 VERILOG-XL 3.10.p001

$end

$timescale

 1ns

$end

$scope module test $end

$var reg 1 ! X $end

$var reg 1 " Z1 $end

$var reg 1 # Z2 $end

$var reg 1 $ Z3 $end

$upscope $end

$enddefinitions $end

$dumpvars

0!

0"

0#

0$

$end

#10

1!

#20

0!

1"

1#

1$

#30

1!

0"

0#

0$

#33

0!

#35

1!

#40

0!

1"

#43

0"

#45

1"

1$

#50

0"

0$

no. of bits

symbol for

this variable

variable name

symbol

new value

changing

time

X

10

Z1

Z2

Z3

20

30

40

50

0

10ns

10ns

3ns

2ns

5ns

