Tutorial 3
Theory of Computation

呂紹甲
(Lu, Shao-chia)
11/23
Homework 3

- We have 5 questions this time:

 Q1: Very Easy
 Q2: Easy
 Q3: Easy
 Q4: Moderate
 Q5: Easy/Moderate
 Q6: (Further studies): Hard to Think
1. Let k-PDA be a pushdown automaton that has k stacks
 - Thus a 0-PDA is an NFA and a 1-PDA is a conventional PDA.

- We already know that 1-PDAs are more powerful than 0-PDAs (why?)
(a) Show that some language can be recognized by a 2-PDA but not a 1-PDA.

Hint:
Find a (simple) non-CFL that can be recognized by 2-PDA

- Conclude that 2-PDAs are more powerful than 1-PDAs (How?)
(b) (Further studies)

Show that if L can be recognized by a 3-PDA, L can be recognized by some 2-PDA

(Hint: use some kind of encoding)

⇒ If the above is true, we can conclude that 2-PDAs are as powerful as 3-PDAs (why?)
2. Show that:

L is decidable

if and only if

some enumerator enumerates L in

lexicographic order
Homework 3

3. Let $S = \{ <M> | M$ is a DFA that accepts w whenever it accepts $w^R \}$

Show that S is decidable.

Hint:
If M recognizes L, can we find an NFA N that recognizes L', where $L' = \{ w^R | w$ is in $L \}$?

If M and N are found. Can we decide if M is in S?
4. Let $PAL_{DFA} = \{ <M> | M \text{ is a DFA that accepts some palindrome} \}$

Show that PAL_{DFA} is decidable.

Hint:

(i) Fact: $\text{CFL} \cap \text{Reg} \to \text{CFL}$ (Prob 2.18)

(ii) Prob 4.23 shows how to prove a similar language is decidable
5. Suppose that we have a decider D such that D decides if the language of a CFG is infinite. That is,

D is a decider for the language:

$INFINITE_{CFG} = \{ <G> | G$ is a CFG and $L(G)$ is infinite $\}$.

BTW, does D exist?
By using \(D \) or otherwise, show that
\[
C_{CFG} = \{ <G, k> \mid G \text{ is a CFG and } L(G) \text{ contains exactly } k \text{ strings where } k \geq 0 \text{ or } k = \infty \}
\]
is decidable.

Hint:
Let \(p \) be the pumping length of \(G \).
If \(L(G) \) is finite, \(L(G) \) cannot have any string longer than \(p \) (why?)
6. (Further studies)

Prove that:

C is Turing-recognizable if and only if

a decidable language D exists such that $C = \{x \mid \exists y (<x, y> \in D) \}$.