CS5371
Theory of Computation
Lecture 9: Automata Theory VII
(Pumping Lemma, Non-CFL)
Objectives

• Introduce Pumping Lemma for CFL

• Apply Pumping Lemma to show that some languages are non-CFL
Pumping Lemma for CFL

Theorem: If \(L \) is a CFL, then there is a number \(p \) (pumping length) where, if \(w \) is any string in \(L \) of length at least \(p \), we can find \(u,v,x,y,z \) with \(w = uvxyz \) and
- for each \(i \geq 0 \), \(uv^i xy^i z \) is in \(L \)
- \(|vy| > 0 \), and
- \(|vxy| \leq p \)
Proof of Pumping Lemma

• Let b be the maximum branching factor in the parse tree of any string in L
 - that is, the right side of any rule has at most b terminals and variables)

• We shall use $p = b^{|V|} + 1$ to prove the lemma

• Observation: What is the minimum height of the parse tree for a string w with length at least p?
Proof of Pumping Lemma (2)

• Height of the parse tree \(\geq |V| + 1 \)
 \(\Rightarrow \) some path in tree \(\geq |V|+2 \) nodes
• Only one such node can be a terminal
 \(\Rightarrow \) at least \(|V|+1 \) variable on the path
• What does that mean?
 Some variable appears at least twice
Proof of Pumping Lemma (3)

- Let \(R \) be a variable that appears at least twice.
- Then, the parse tree of the string \(w \) looks something like:

\[
\begin{align*}
S & \quad R \\
R & \quad R \\
 R & \\
\quad w = u v x y z
\end{align*}
\]

So, \(uv^i xy^i z \) is in \(L \) for any \(i \geq 0 \) (why??)
$uv^i x y^i z$ is in L for any $i \geq 0$

- **Facts:** R derives x, R derives vxy
- Since S derives uRz, and R derives x, S can derive uxz

- Since S derives $uvRyz$ and R derives vxy, S can derive $uvvyzz$
Proof of Pumping Lemma (5)

- To complete the prove, we need to show $|vy| > 0$ and $|vxy| \leq p$
- The current construction cannot, but we can do so if we further restrict:
 1. parse tree is the smallest among all that can generate the string w
 2. R is chosen from the lowest $|V|+1$ variables in the longest root-to-leaf path
\[|vy| > 0\]

- Suppose on the contrary that \(|vy| = 0\)
 - \(\Rightarrow\) Both \(v\) and \(y\) are empty strings
- Then in the parse tree, we replace “Subtree of \(R\) that generates \(vxy\)” by “Subtree of \(R\) that generates \(x\)”
- Resulting parse tree will also generate \(w\) (why?), but it has fewer nodes
 - \(\Rightarrow\) contradiction occurs
\[|vxy| \leq p \]

- \(R \) is chosen from the lowest \(|V| + 1\) variables in the longest root-to-leaf path
- Consider subtree of \(R \) that generates \(vxy \)
 - Its height is at most \(|V|+1\) (why?)
 - It has at most \(b^{|V|+1} \) leaves
 - Thus, \(vxy \) has at most \(p \) characters
 (as \(p = b^{|V|+1} \))

Recall: \(b = \text{maximum branching factor} \)
Non-CFL (example 1)

Theorem: The language

\[A = \{a^n b^n c^n \mid n \geq 0\} \]

is not a context-free language.

How to prove?
By contradiction, using pumping lemma
First thing: Assume that \(A \) is CFL
Proof (example 1)

• Let \(p \) be the pumping length
• Let \(w = a^p b^p c^p \) in \(A \), and consider partition \(w \) into any \(u,v,x,y,z \) such that \(w = uvxyz \)
• Two possible cases:

 - Case 1: Both \(v \) and \(y \) have only one type of char
 - Case 2: \(v \) or \(y \) has more than one type of char
• In both cases, \(uvvxyyz \) is not in \(A \) (why?)
• Thus, we find a string at least \(p \) long in \(A \) that does not satisfy pumping lemma

 \(\Rightarrow \) contradiction occurs
Theorem: The language
\[B = \{a^ib^jc^k \mid 0 \leq i \leq j \leq k\} \]
is not a context-free language.

How to prove?
By contradiction, using pumping lemma
First thing: Assume that \(B \) is CFL
Proof (example 2)

• Let p be the pumping length
• Let $w = a^p b^p c^p$ in B, and consider partition w into any u, v, x, y, z such that $w = uvxyz$
• Two possible cases:
 Case 1: Both v and y have only one type of char
 Case 2: v or y has more than one type of char
• We can see that for Case 2, $uvvxyyyz$ cannot be in B
• How about Case 1?
Proof (example 2)

• Unfortunately, for Case 1, if \(v = b, y = c \), then the string \(uvvxyyz \) is always in \(B \)...

• So, how to get a contradiction??

• We divide Case 1 into two subcases:
 Subcase 1.1: char \(a \) not appear in both \(v \) and \(y \)
 Subcase 1.2: char \(a \) appears in \(v \) or \(y \)
Proof (example 2)

• For Subcase 1.1 (char a not appear in v and y),
 \(uxz\) cannot be in \(B\) [why?]

• For Subcase 1.2 (char a appears in v or y),
 \(uvvxyyz\) cannot be in \(B\) [why?]

• Thus, we find a string at least \(p\) long in \(B\)
 that does not satisfy pumping lemma
 \(\Rightarrow\) contradiction occurs
Non-CFL (example 3)

Theorem: The language
\[C = \{ww \mid w \text{ in } \{0,1\}^*\} \]
is not a context-free language.

How to prove?
By contradiction, use pumping lemma on
\[0p1p0p1p \]
Proof (example 3)

• When \(w = 0^p 1^p 0^p 1^p = uvxyz \), what can be the corresponding \(vxy \)?
 - Case 1: \(vxy \) appears in the first half
 - Case 2: \(vxy \) appears in the second half
 - Case 3: \(vxy \) includes the middle ‘10’

• For Cases 1 or 2, \(uvvxyzz \) not in \(C \) (why?)

• For Case 3, \(u \) must start with \(0^p \), and \(z \) must end with \(1^p \) (because \(|vxy| \leq p \) and \(vxy \) includes the middle ‘10’)

 \(\Rightarrow \) Then, \(uxz \) cannot be in \(C \) (why?)
CFL is closed under all regular operations

- **Union:** We have seen that before

- **Concatenation:**
 Let G_A and G_B be CFGs for two CFLs A and B, using different sets of variables.
 Let S_A and S_B be their start variables.
 Combine the rules, add rule $S \rightarrow S_A S_B$

- **Star:** Add rule $S \rightarrow S S_A | \epsilon$
CFL closed under complement?

- What is the complement of \(A = \{a^n b^n c^n \mid n \geq 0\} \)?

- The complement of \(A \) includes:
 - strings containing \(ba \), \(ca \), or \(cb \);
 - strings \(a^i b^j c^k \) with \(i \neq j \) or \(j \neq k \)

 \(\Rightarrow \) the complement of \(A \) is a CFL (why??)

- As \(A \) is not a CFL, what can we conclude?
CFL closed under intersection?

• Is $A = \{a^n b^n c^m \mid n,m \geq 0\}$ a CFL?
• Is $B = \{a^m b^n c^n \mid n,m \geq 0\}$ a CFL?
• What is the intersection of A and B? Is it a CFL?
• What can we conclude?
What we have learnt so far?

• PDA = CFG
 - Prove by Construction

• Properties of CFG
 - Ambiguous, Chomsky Normal Form

• Pumping Lemma
 - Prove by Contradiction (using Parse Tree)

• Existence of non-CFL
Language Hierarchy

Set of Languages (\(= \) set of “set of strings”)

\[\{0^n1^n2^n\} \]

\{\{w \mid w = w^R\}\}

\{\{w \mid w \text{ with even } |w|\}\}

\{\{0 \times 1^y\}\}

Set of Regular Language

Set of Context-Free Free Language
Next Time

- Turing Machine
 - A even more power computer