CS5371
Theory of Computation
Lecture 5: Automata Theory III
(Non-regular Language, Pumping Lemma, Regular Expression)
Objectives

• Prove the Pumping Lemma, and use it to show that there are non-regular languages

• Introduce Regular Expression
 - which is one way to describe a language (or a set of strings)
Non-Regular Language?

• To understand the power of DFA, apart from knowing what it can do, we need to know what it cannot do.
• Let’s look at the language $B = \{0^n1^n \mid n \geq 0\}$.
• If we try to find a DFA to recognize B, the DFA needs to keep track of the number of 0’s we have seen so far.
• However, number of 0’s is unlimited... there are unlimited number of possibilities.
• So, it is NOT POSSIBLE because the DFA just has FINITE number of states!
Pumping Lemma

Theorem: If A is a regular language, then there is a number p (called the pumping length) such that:

If s is a string in A of length at least p, then s can be divided into three pieces, $s = xyz$, satisfying the following three conditions:

- For each $k \geq 0$, $xy^kz \in A$
- $|y| > 0$, and
- $|xy| \leq p$
Pumping Lemma (Proof)

• Let us assign the pumping length p to be the number of states in the DFA that recognize A
• Consider the sequence of states that the DFA goes through when reading $s = s_1s_2...s_n$
• At the beginning, it is at state $r_0 = q_{\text{start}}$
• Then, it goes to r_1 after reading s_1, then goes to r_2, then goes to r_3 ...
Pumping Lemma (Proof)

• When it has finished reading s_p, one of the state has been visited at least two times (why?)
• That is, $r_i = r_j$, for some $0 \leq i < j \leq p$
• Now, let $x = s_1s_2...s_i$,

 $y = s_{i+1}s_{i+2}...s_j$, and
 $z = s_{j+1}s_{j+2}...s_n$

• We can check that $xy^kz \in A$ for all $k \geq 0$ (why?)
• Also, $|y| > 0$ and $|xy| \leq p$ (why?)
Use of Pumping Lemma
(Example 1)

- Lemma: The language $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

- How to prove?
 - Use Pumping Lemma
 - By contradiction

- Proof: Assume that B is regular. Then...
Use of Pumping Lemma
(Example 1)

• Then, let p be the pumping length
• We know that 0^p1^p is in B
• By pumping lemma, we know that 0^p1^p can be divided into three parts, xyz, such that $|y| > 0$, $|xy| \leq p$, and xy^kz is in B for all $k \geq 0$
• In this case, y consists of all 0’s and at least 1 zero (why??)
• $xyyz$ is in B, but $xyyz$ has more 0’s than 1’s
• Contradiction occurs!
Use of Pumping Lemma
(Example 2)

• Lemma: The language \(C = \{ w \mid w \text{ has an equal number of 0s and 1s} \} \) is not regular.

• How to prove?
Use of Pumping Lemma
(Example 2)

• Proof 1: Similar to Example 1. Let $s = 0^p1^p$ and apply pumping lemma.

• Proof 2: We use the fact: the class of regular languages is closed under intersection (will be proved in tutorial next Tue). That is,

If A and B are regular languages, then $A \cap B$ is also a regular language.
Use of Pumping Lemma
(Example 2: Proof 2)

• Let $A = \{ 0^m1^n \mid m, n \geq 0 \}$

• Note that A is regular (why?)

• Now, assume that C is regular. Then, it implies that $C \cap A$ is regular

• However, $C \cap A = \{ 0^n1^n \mid n \geq 0 \}$, which is not regular

• Thus, contradiction occurs (where?). So, C is not regular
Use of Pumping Lemma
(Example 2)

- In Proof 1, we choose \(s = 0^p1^p\), we can apply pumping lemma successfully and prove that \(C\) is not regular.
- However, if we 'unluckily' choose \(s = (01)^p\), using pumping lemma may not give contradiction... (E.g., \(|x| = \varepsilon, y = 01, z = (01)^{p-1}\), then every \(xy^kz\) is in \(C\)).
- So, if you fail on first attempt, don't give up, try another one!
Use of Pumping Lemma
(Example 3)

- Lemma: The language $F = \{ ww \mid w \in \{0,1\}^* \}$ is not regular.

- How to prove?
Use of Pumping Lemma
(Example 4)

• Lemma: The language \(\{1^{n^2} \mid n \geq 0\} \) is not regular.

• Proof:
 - Let \(p \) be the pumping length.
 - Let \(s = 1^{p^2} \).
 - By pumping lemma, we have \(|xyz| = p^2 \).
 Also, \(0 < |y| \leq |xy| \leq p \).
 - \(p^2 < |x|y|z| \leq p^2 + p < (p+1)^2 \)
 - Contradiction occurs (where??)
Use of Pumping Lemma
(Example 5)

- Lemma: The language $E = \{ 0^i 1^j \mid i > j \}$ is not regular.

- Proof: Let $s = 0^{p+1}1^p$. By pumping lemma, we can divide s into xyz such that y consists of all 0's and $|y| > 0$.
- Then, $xz \in E$ but xz does not have more 0s than 1s.
- Contradiction occurs.
In arithmetic, we can use the operations + and \(x \) to build up expressions, such as
\[(5+3) \times 4\]
- The value of this expression is 32

Similarly, we can use regular operations to build up regular expressions, such as
\[(0 \cup 1)0^*\]
- The value of this expression is a set of strings (or a language)
What does \((0 \cup 1)0^*\) mean?

- The symbols 0 and 1 are shorthand for the set \{0\} and \{1\}
 - So, \((0 \cup 1)\) means \((\{0\} \cup \{1\})\)
 - \(0^*\) means \(\{0\}^*\), whose value is the language consisting of all strings with any number of 0s

- Just like \(x\) in arithmetic expression, the concatenation symbol \(\circ\) is often omitted
 - So, \((0 \cup 1)0^*\) means \((0 \cup 1) \circ 0^*\)

- This expression describes the set of strings that start with a 0 or a 1, which is followed by any number of 0s
What does the following regular expressions mean?

- 0^*10^*: Binary strings containing exactly one 1
- $\Sigma^*1\Sigma^*$: Any strings containing 1
- $\Sigma^*001\Sigma^*$: Any strings containing 001
- $1^*(01^+)^*$: Binary strings with 1 following each 0
- $(\Sigma\Sigma)^*$: Any strings with even length
- $(0 \cup \varepsilon)^*1$: $01^* \cup 1^*$
- $1^* \emptyset$: Empty set (no strings)

Note: The notation R^+ means RR^*
Next time

• Formally define regular expression
• We will also show that
 - (1) Language recognized by DFA can be described by Regular Expression
 - (2) Language described by Regular Expression can be recognized by DFA