1. Prove that if $P = NP$, then $PATH$ is NP-complete.

Ans. If $P = NP$, we claim that every language in NP can be reduced to $PATH$ in polynomial time. Then, together with the fact that $PATH$ is in NP, we have $PATH$ is NP-complete.

To prove our claim, we shall show SAT can be reduced to $PATH$ in polynomial time. Firstly, since $P = NP$, there exists a decider D for SAT that runs in polynomial time. Based on this, consider the following TM F that computes a reduction f from SAT to $PATH$:

$$F = \text{"On input } \langle \phi \rangle, \text{"
1. Run } D \text{ on } \langle \phi \rangle.
2. If } D \text{ accepts } \langle \phi \rangle, \text{ construct a graph } G \text{ containing two vertices } s \text{ and } t, \text{ with an edge } \{s, t\} \text{ joining them.}
3. Otherwise, if } D \text{ rejects } \langle \phi \rangle, \text{ construct a graph } G \text{ with two isolated vertices } s \text{ and } t.
4. In either case, output } \langle G, s, t \rangle."$$

It is easy to check that $\langle \phi \rangle \in SAT \Leftrightarrow \langle G, s, t \rangle \in PATH$. Also, the above reduction takes polynomial time. This completes the proof of the claim.

2. Let $LPATH$ denote the language:

$$LPATH = \{ \langle G, s, t, k \rangle \mid G \text{ contains a simple path of length at least } k \text{ from } s \text{ to } t \}.$$

Ans. Firstly, $LPATH$ is in NP because a certificate for $\langle G, s, t, k \rangle$ simply consists of the sequence of edges in a simple path from s to t with length at least k, so that for this kind of certificate, we can find a corresponding polynomial time DTM verifier.

To further show that every NP problem can be reduced $LPATH$ in polynomial time, we shall reduce $HAMPATH$ to $LPATH$. Consider the following TM F that computes a reduction f from $HAMPATH$ to $LPATH$:

$$F = \text{"On input } \langle G, s, t \rangle, \text{"
1. Output } \langle G, s, t, n - 1 \rangle, \text{ where } n \text{ is the number of vertices in } G."$$

Firstly, if there is a hamiltonian path from s to t in G, the path would have length $n - 1$ so that $\langle G, s, t, n - 1 \rangle$ is in $LPATH$. On the other hand, if $\langle G, s, t, n - 1 \rangle$ is in $LPATH$, the simple path from s to t has length $n - 1$, so that it must be hamiltonian. Thus, $\langle G, s, t \rangle \in HAMPATH \Leftrightarrow \langle G, s, t, n - 1 \rangle \in LPATH$.

Also, it is obvious that the above reduction runs in polynomial time. This implies $HAMPATH$ is polynomial-time reducible to $LPATH$. Thus, $LPATH$ is NP-complete.
3. Let S be a finite set and $C = \{C_1, C_2, \ldots, C_k\}$ be a collection of subsets of S, for some $k > 0$. We say S is two-colorable with respect to C if we can color the elements of S in either red or blue, such that each subset C_i contains at least a red element and at least a blue element.

Let 2COLOR denote the language:

$$2\text{COLOR} = \{\langle S, C \rangle \mid S \text{ is two-colorable with respect to } C\}.$$

Show that 2COLOR is NP-complete.

Ans. It is easy to show that 2COLOR is in NP (how?). To show that every NP language can be reduced to 2COLOR in polynomial time, we shall use reduction from $\neg SAT$.

Consider the following TM F that computes a reduction from $\neg SAT$ to 2COLOR:

$$F = \text{"On input formula } \langle \psi \rangle \text{,}
1. \text{For each variable } x \text{ in } \psi, \text{ create two variables } s_x \text{ and } s'_x \text{ in } S.
\text{Also, create a subset } \{s_x, s'_x\} \text{ of } C.
2. \text{For each clause } \gamma_i \text{ in } \psi, \text{ create a subset } c_i \text{ of } C \text{ such that}
 \begin{align*}
 &\text{(i) if } x \in \gamma_i, \quad s_x \in c_i; \\
 &\text{(ii) if } \neg x \in \gamma_i, \quad s'_x \in c_i.
 \end{align*}
3. \text{Output } \langle S, C \rangle."$$

Firstly, if there is a satisfying not-all-equal assignment (say, A) for ψ, it is easy to obtain a 2-coloring for the variables in S as follows: If x is assigned true in A, we color s_x to red and s'_x to blue; otherwise, we color s_x to blue and s'_x to red. Under this coloring, each subset $\{s_x, s'_x\}$ must contain 2 colors, while each subset c_i also contains 2 colors (because γ_i is not-all-equal under the assignment A). Thus, $\langle S, C \rangle$ is in 2COLOR.

On the other hand, if $\langle S, C \rangle$ is in 2COLOR, we can obtain a satisfying not-all-equal assignment for ψ as follows: Fix a 2-coloring scheme for $\langle S, C \rangle$. If s_x is colored red, assign x to true in ψ. Otherwise, assign x to false. Since c_i contains two colors, the corresponding clause γ_i in ψ must be not-all-equal under the above assignment. This implies that every clause in ψ will be not-all-equal, so that ψ has a satisfying not-all-equal assignment.

In summary, we have

$$\langle \psi \rangle \in \neg SAT \iff \langle S, C \rangle \in 2\text{COLOR}.$$

Also, the above reduction takes polynomial time to run. Thus, $\neg SAT \leq_P 2\text{COLOR}$, so that 2COLOR is NP-complete.

4. (Further Studies: No marks) Let ϕ be a cnf-formula. An assignment to the variables of ϕ is called not-all-equal if in each clause, at least one literal is TRUE and at least one literal is FALSE.

Let $\neg SAT$ be the language:

$$\neg SAT = \{\langle \phi \rangle \mid \phi \text{ is a cnf-formula which has a satisfying not-all-equal assignment}\}.$$

Show that $\neg SAT$ is NP-complete.
Ans. It is easy to check that $\neg \text{SAT}$ is in NP. It remains to show that every NP language is polynomial-time reducible to $\neg \text{SAT}$. To do so, we shall reduce CNF-SAT to $\neg \text{SAT}$.

Before that, we first notice that for any formula ϕ, if A is a satisfying not-all-equal assignment, then the negation of A is also a satisfying not-all-equal assignment. For instance, let

$$\phi = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor y \lor \neg z).$$

Then, $A = (x = 0, y = 1, z = 0)$ is a satisfying not-all-equal assignment. On the other hand, the negation of A, which is $(x = 1, y = 0, z = 1)$, is also a satisfying not-all-equal assignment.

Now, the reduction is as follows. Let

$$C_i = (x_1 \lor x_2 \lor \cdots \lor x_k)$$

be the ith clause in an instance of CNF-SAT. We shall replace clause C_i with two clauses

$$D_i = (x_1 \lor x_2 \lor \cdots \lor x_{k-1} \lor z_i) \quad \text{and} \quad E_i = (\neg z_i \lor x_k \lor b),$$

where z_i is a new variable corresponding to C_i, and b is a global variable shared by other D_j’s and E_j’s.

Let ϕ be the original cnf-formula, and ψ be the transformed cnf-formula. First, if the original formula ϕ is satisfiable, it is easy to obtain a satisfying not-all-equal assignment for the transformed formula ψ as follows:

(a) Use the same assignment for the variables that appear in ϕ;
(b) For clause D_i, set $z_i = \neg(x_1 \lor x_2 \lor \cdots \lor x_{k-1})$;
(c) Set b to be false;

Under this assignment, for each i, the clause D_i must be not-all-equal. Also, we know that either x_k is true or $(x_1 \lor x_2 \lor \cdots \lor x_{k-1})$ is true (why?). The latter case implies that z_i is false. Then, in both cases, we know that E_i must be not-all-equal (because b is set to false). Thus, $\langle \phi \rangle$ is in CNF-SAT implies $\langle \psi \rangle$ is in $\neg \text{SAT}$.

On the other hand, if $\langle \psi \rangle$ is in $\neg \text{SAT}$, let A be a satisfying not-all-equal assignment for ψ. If b is set to false in A, we claim that with the same assignment for the variables that appear in ϕ, ϕ will become satisfied. Consider C_i: if x_k is true, C_i is satisfied immediately. Otherwise, we know that E_i is not-all-equal, so that z_i is true. In this case, $\neg z_i$ is false in D_i so that $(x_1 \lor x_2 \lor \cdots \lor x_{k-1})$ must be true. This in turn would imply C_i is satisfied in ϕ. In summary, if b is set to false in A, then ϕ is satisfiable.

Next, if b is set to true in A, we know that the negation of A is also a satisfying not-all-equal assignment for ψ. Then, we can proceed with the same reasoning and show that ϕ is also satisfiable (using the negated assignment).

Thus, $\langle \psi \rangle$ is in $\neg \text{SAT}$ implies $\langle \phi \rangle$ is in CNF-SAT, so that

$$\langle \phi \rangle \in \text{CNF-SAT} \iff \langle \psi \rangle \in \neg \text{SAT}.$$

Finally, the reduction takes polynomial time to run, so that we have proven $\text{CNF-SAT} \leq_P \neg \text{SAT}$. This completes the proof.

1The proof is very straightforward: a literal is assigned true in A if and only if it is assigned false in the negation of A. Since A guarantees each clause has at least one false, the negation of A thus guarantees each clause has at least one true so that it is also satisfying. Moreover, A guarantees each clause has at least one true, so that the negation of A guarantees each clause must be not-all-equal.