1. (20%) Let \(T = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \} \). Show that \(T \) is undecidable.

2. (15%) In the silly Post Correspondence Problem, \(SPCP \), in each pair the top string has the same length as the bottom string. Show that \(SPCP \) is decidable.

3. (20%) Show that \(A \) is Turing-recognizable if and only if \(A \leq_m A_{TM} \).

4. (20%) Show that \(A \) is decidable if and only if \(A \leq_m 0^*1^* \).

5. (25%) Let \(J = \{ w \mid \text{either } w = 0x \text{ for some } x \in A_{TM}, \text{ or } w = 1y \text{ for some } y \notin A_{TM} \} \). Show that \(A_{TM} \leq_m J \) and \(A_{TM} \leq_m \bar{J} \). Conclude that \(J \) and \(\bar{J} \) are non-Turing-recognizable.

6. (Further studies: No marks) Let \(K = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \{ \langle M \rangle \} \} \). Show that neither \(K \) nor the complement of \(K \) is Turing-recognizable.