1. **Ans.** The language \(\{0^n1^n2^n \mid n \geq 1\} \) is not context-free, so that it cannot be recognized by a 1-PDA. However, we can easily design a 2-PDA to recognize this language as follows (Let \(S_1 \) and \(S_2 \) be the two stacks in the 2-PDA):

1. For each 0 it reads, push a 0 in \(S_1 \) and push a 0 in \(S_2 \)
2. For each 1 it reads, pop a 0 from \(S_1 \)
3. For each 2 it reads, pop a 0 from \(S_2 \)
4. If at any step, we discover the input string is not in correct order (e.g., a 0 is read after 1 is read), we reject the input string
5. If \(S_1 \) and \(S_2 \) become just empty at the end, we accept the input string

Thus, we have found a language that can be recognized by some 2-PDA but not by any 1-PDA. On the other hand, if a language can be recognized by a 1-PDA, it must be recognized by some 2-PDA. Therefore, 2-PDAs are more powerful than 1-PDAs.

2. **Ans.** If a language \(L \) is decidable, there exists a decider \(D \) that decides \(L \). Then, we can construct an enumerator \(E \) that enumerates the strings of \(L \) in the desired ordering (shorter string first, then lexicographical order) as follows:

\[
E = \text{"On any input,} \\
1. \text{Ignore the input} \\
2. \text{For } k = 1, 2, \ldots \\
 \hspace{1em} \text{i. Run } D \text{ on the } k\text{th string in } \Sigma^*, \text{ according to the desired ordering} \\
 \hspace{1em} \text{ii. If } D \text{ accepts, print the string"}
\]

Conversely, if some enumerator \(E \) enumerates the strings of \(L \) in the desired ordering, then either \(L \) is a finite set so that it is decidable, or if \(L \) is an infinite set, we can construct a TM \(D \) based on \(E \) as follows:

\[
D = \text{"On input } w, \\
1. \text{Run } E \\
 \hspace{1em} \text{i. For every string } s \text{ printed by } E, \text{ if } s = w, \text{ accept } w \\
 \hspace{1em} \text{ii. Else if } s < w \text{ in the desired ordering, continue} \\
 \hspace{1em} \text{iii. Else if } s > w, \text{ reject } w"
\]

Since at most a finite number of strings of \(L \) are smaller than \(w \) in the desired ordering, so after a finite number of strings are printed by \(E \), we can decide if \(w \) is in \(L \) or not. So, \(D \) runs in finite steps and is thus a decider.

3. Let \(S = \{ \langle M \rangle \mid M \text{ is a DFA that accepts } w \text{ whenever it accepts the reverse of } w \} \).

 (a) **Ans.** An example of a DFA in \(S \): A DFA that accepts all strings.

 (b) **Ans.** To show \(S \) is decidable, we construct a decider \(D \) for \(S \) as follows (Let \(C \) be a TM that decides \(EQ_{DFA} \)):
D = “On input ⟨M⟩,
1. Construct an NFA M′ such that L(M′) = \{w^R \mid w \in L(M)\}
2. Convert M′ into an equivalent DFA M″
3. Use C to compare L(M″) and L(M)
4. If L(M″) = L(M), accept. Else, reject.

In the above TM, Step 1 can be done by converting M into M′ in finite steps. The idea is to (i) reverse the directions of all transition arrows in M, (ii) create a new state q′ in M′, and connects q′ to each original final states of M with ε-transitions, and (iii) make the original start state of M a final state of M′. It is easy to check that L(M′) = \{w^R \mid w \in L(M)\}.

Also, both Step 2 and Step 3 can be done in finite steps, as we learnt from the lectures (See Notes 4 pages 13–15, and Notes 12 pages 16–17). So, D runs in finite steps and is thus a decider.

4. Ans. Let PAL_{DFA} = \{⟨M⟩ \mid M is a DFA that accepts some palindrome\}. To show PAL_{DFA} is decidable, we construct a decider D for PAL_{DFA} as follows (Let K be a TM that decides E_{CFG}):

D = “On input ⟨M⟩,
1. Construct a PDA P such that L(P) = \{w \mid w is a palindrome\}
2. Construct a PDA P′ such that L(P′) = L(P) \cap L(M)
3. Convert P′ into an equivalent CFG G
4. Use K to check if L(G) is empty.
5. If L(G) is empty, reject. Else, accept.

In the above TM, Step 1 can be done in finite steps. Step 2 is based on Prob 2.18 and can be done in finite steps. Step 3 is the conversion of PDA into an equivalent CFG, which can be done in finite steps (See Notes 8, pages 28–34). Step 4 is done in finite steps, because the decider K can check whether the language of a CFG is empty (For the existence of K, see Notes 12, pages 20–21). In summary, D runs in finite steps for any input, and is thus a decider.

5. Ans. Let C be the language

C_{CFG} = \{⟨G,k⟩ \mid G is a CFG and L(G) contains exactly k strings where k ≥ 0 or k = ∞\}

In this problem, we are given a decider D that decides if the language of a CFG is infinite. Then, we can show that C is decidable, by finding a corresponding decider F as follows:

F = “On input ⟨G,k⟩,
1. Use D to check if L(G) is an infinite set.
2. There are four cases:
 i. If yes, and k = ∞, accept.
 ii. If yes, but k ≠ ∞, reject.
 iii. If no, but k = ∞, reject.
 iv. If no, and k ≠ ∞, continue.
3. Compute the pumping length p for the grammar G.
4. Set $count$ to be 0.
5. For $x = 1, 2, \ldots, p$
 i. For all string s with length $= x$,
 Check if s can be generated by G; if so, increment $count$ by 1.
6. If $count = k$, accept. Else, reject.

In the above TM F, Steps 1–2 correctly answer the case where $L(G)$ is an infinite set, or $k = \infty$. So, after Step 2, we only deal with a grammar G whose language is a finite set, and our task is to check whether the language size is exactly k. To do so, the loop in Step 5 counts all string that can be generated by G, whose length is at most the pumping length p. Because we know that $L(G)$ is finite, we are sure that no strings of $L(G)$ can be longer than p. In other words, the value $count$ correctly computes the exact number of strings in $L(G)$. So, Step 6 can check correctly answer the case when $L(G)$ is finite, and k is finite.

Finally, it is easy to check that each step runs in finite number of steps. Thus, F is a decider, so that C is a decidable language.