CS5314
Randomized Algorithms

Lecture 15: Balls, Bins, Random Graphs
(Hashing)
Objectives

- Study various hashing schemes
- Apply balls-and-bins model to analyze their performances
Suppose our library wants to maintain a book inventory system so that a user can search if a certain book is available.

A Natural Method:
Keep a list of the names of the books.

When a user asks for a certain book, we check if its name is in the list.
Chain Hashing (2)

- Assume each book name is of $O(1)$ length (say, 8 to 80 characters)
- Let $m = \#$ books in our library
- To speed up the checking process, we store the m book names in sorted order

\Rightarrow checking w takes: $O(\log m)$ time
Another idea to speed up:

Create a hash function f that places the m book names into n bins

\Rightarrow Name x is placed in Bin $f(x)$

• When w arrives, we compare w with all the names in Bin $f(w)$

\Rightarrow Report found if w is in Bin $f(w)$
Chain Hashing (4)

- Usually, we can find a good hash function f, such that:

 For a random name x,
 1. $\Pr(f(x) = j) = 1/n$ for each j
 $\Rightarrow f$ appears random
 2. Values of $f(x)$ are independent of each other
 $\Rightarrow f$ appears independent
Chain Hashing (5)

- In addition, suppose further we can compute $f(x)$ in $O(1)$ time ...

- What will be the time for the checking? [Can you see it is exactly asking about the load in the Balls-and-Bins model?]

- Firstly,
 \[E[\# \text{ names in a bin}] = \frac{m}{n} \]
Chain Hashing (6)

- If \(n = m \),
 \[\Rightarrow \text{Expected # names} = 1 \]

- Also, maximum # names in a bin is:
 \[\Theta \left(\frac{\ln m}{\ln \ln m} \right) \text{ w.h.p.} \]
 \[\Rightarrow \text{Better than binary search !!!} \]
 \[\Rightarrow \text{Drawback: wasted space} \]

 For instance, if we use \(m \) bins for \(m \) items, several bins will be empty ...
Approximate Membership

• Suppose we now have a similar problem: to maintain a password checker system so that a user can tell if a certain password is in the blacklist.

⇒ Before a user updates the password to \(w \), we check if \(w \) is in the blacklist.

• Let \(m = \# \) bad passwords in the blacklist.
Approximate Membership

Using the previous ideas, we can either

- **Maintain sorted list:**
 - checking time: $O(\log m)$

- **Find a good hash function:**
 - checking time: $O(\ln m / \ln \ln m)$ w.h.p.
Approximate Membership

Alternative scheme:

Target: To save space
Trade-off: Allow false positive errors
 (meaning: we may say \(w \) is bad even if it is not in the blacklist)

However, we will never say \(w \) is good if it is in the blacklist
Approximate Membership (2)

Idea: To represent each of the m bad passwords with a short fingerprint.

Then, when w arrives,
1. compute the fingerprint of w
2. If it matches fingerprints of any bad passwords, we say w is in the list
3. Else, we say w is not in the list

Thus, the shorter the fingerprint, the more likely that a false positive error occurs.
In general, our problem is as follows:

- Let \(S = \{ s_1, s_2, \ldots, s_m \} \), with \(s_i \in [1,U] \).
- Assume we have a good hash function so that each \(s_i \) can be mapped randomly to a short fingerprint of \(b \) bits long.
- Suppose we also allow \(\Pr(\text{false positive error}) \leq r \).

Question: What is min length of \(b \)?
Approximate Membership (4)

With the given hash function,

for an item \(s' \) not in \(S \), an item \(s_j \) in \(S \),
\[
\text{Pr}(s' \text{ and } s_j \text{ have different fingerprints}) = 1 - 1/2^b
\]

\(\Rightarrow \) For an item \(s' \) not in \(S \),
\[
\text{Pr} (\text{false positive error}) = 1 - (1 - 1/2^b)^m \geq 1 - e^{-m/2^b}
\]
Approximate Membership (5)

Since we want the false positive error probability to be at most \(r \), we need

\[
 r \geq 1 - e^{-m/2^b}
\]

So, \(e^{-m/2^b} \geq 1 - r \), or \(-m/2^b \geq \ln (1 - r) \)

\[
 2^b \geq \frac{-m}{\ln (1 - r)}
\]

\[
 b \geq \log_2 \left(\frac{-m}{\ln (1 - r)} \right)
\]

Thus, if \(r \) is a constant, \(b = \Omega \left(\log m \right) \)
Approximate Membership (6)

- What if we choose $b = 2 \log m$?
- In this case,

$$Pr(\text{false positive error}) = 1 - (1 - 1/2^b)^m$$

$$= 1 - (1 - 1/m^2)^m$$

$$< 1/m$$
Bloom Filters

Can we get more tradeoff between space (b) and false positive error probability (r)?

A method, called Bloom Filter, is to prepare:

- an n-bit vector $A[1..n]$ (initially all bits are 0)
- k independent good hash functions, $h_1, h_2, ..., h_k$,
 each can map an element to $[1,n]$
Bloom Filters (2)

Then, for each element s_j in S,
1. Compute k hash values $h_i(s_j)$
2. Mark corresponding bits $A[h_i(s_j)]$ to 1

Later, to test if a value s is in S,
1. Apply the k hash functions on s
2. Find the corresponding k bits in A
3. If all are 1, we conclude that s is in S
4. Else, we conclude that s is not in S
Questions:
When can a Bloom filter make an error?
(1) Will it say s is in S when s is not in S?
(2) Will it say s is not in S when s is in S?

Answer. (1) Yes. (2) No.

⇒ Only have false positive errors
Bloom Filters (4)

• The probability of false positive error can be calculated as follows:
 \[(\text{recall: } m = \text{size of } S, \ n = \text{length of } A)\]

• First, in the desired Bloom filter,
 \[\Pr(\text{ a specific bit } A[x] == 0)\]
 \[= (1 - 1/n)^m \approx e^{-km/n} = p\]

• Next, we assume \textit{exactly} a fraction of \(p\) entries in \(A\) is 0
 \[\rightarrow \text{ this assumption will be removed later}\]
Based on the assumption, we have

\[\Pr(\text{false positive error}) = (1 - p)^k \]

\[\Rightarrow \text{We should minimize the value} \]

\[f = (1 - p)^k = (1 - e^{-km/n})^k \]

Question: Should we use a large \(k \)? Or a small \(k \)?
Suppose m and n are given. Observe that:

1. False positive error occurs only if all the corresponding k bits are 1
 - If k is large, more difficult to occur
 - Better to have large k

2. If k is very large, the bit-vector A in will be nearly all 1’s!
 - Easy to have false positive error ...
First, to minimize $f \iff$ minimize $\ln f$

- Let us find the optimal k by calculus:

- Let $g(k) = \ln f = k \ln (1 - e^{-km/n})$

- Differentiating g, we have

 $$g' = \ln (1 - e^{-km/n}) + ke^{-km/n}(m/n)/(1 - e^{-km/n})$$

 \[\Rightarrow g' = 0 \quad \text{when} \quad k = (\ln 2) \left(\frac{n}{m}\right)\]

 which corresponds to a global minimum
Bloom Filters (8)

When we choose the best $k = (\ln 2) \left(\frac{n}{m}\right)$,

$$f = (1 - e^{-km/n})^k$$

$$= (1/2)^k$$

$$= (0.6185)^{n/m}$$

Remark 1: In practice, k must an integer, so we cannot achieve the global min

\Rightarrow Actual f will be slightly higher

Remark 2: If $k = 1$, it is exactly the previous fingerprint scheme
Bloom Filters (9)

Question: What is space usage per item?

- The space of the k hash functions should be negligible

- A Bloom filter uses n bits, and we have m items \Rightarrow n/m bits per item

Is Bloom Filter better than the previous fingerprint scheme?
Bloom Filters (10)

For fingerprint scheme,
constant false positive error probability requires \(\Omega(\log m) \) bits per item ...

For Bloom filter,
already very effective if we have constant bits per item

E.g., when \(n/m = 8 \), \(k \) is around 5 or 6
\(\Rightarrow \) \(\Pr(\text{false positive error}) \approx 0.021 \)
Bloom Filters (11)

- We now remove the assumption that exactly a fraction of \(p \) entries in \(A \) is 0.
- In the actual case, the fraction of 0 is equivalent to the fraction of empty bins after \(km \) balls are thrown into \(n \) bins.

(1) What is \(\mathbb{E}[\#\text{entries with 0 balls}] \)?

(2) How to bound the actual fraction of 0 is very close to \(p \)?
Bloom Filters (12)

Answer:

(1) The expected number of entries with 0 balls = \(n \left(1 - \frac{1}{n} \right)^{km} \)

(2) Let us use Poisson Approximation

Let \(p' = (1 - \frac{1}{n})^{km} \)

Let \(X = \text{number of 0-entries} \)

\(r = km = \text{number of balls} \)
Bloom Filters (13)

Also, define indicator

\[X_j = 1 \quad \text{if } j^{\text{th}} \text{ entry has 0 balls} \]
\[X_j = 0 \quad \text{otherwise} \]

\[X = X_1 + X_2 + \ldots + X_n \]

\[\Pr(|X - np'| \geq \varepsilon n \text{ in exact case}) \]
\[\leq e r^{1/2} \Pr(|X - np'| \geq \varepsilon n \text{ in Poisson case}) \]
\[= e r^{1/2} \Pr(|\sum_j X_j - np'| \geq \varepsilon n \text{ in Poisson case}) \]
Bloom Filters (14)

- In Poisson case, X_j's are independent, and each of them has probability p' to be 1.

- In other words, in Poisson case,

$$X = \text{sum of } n \text{ independent Bernoulli trials each with probability } p' \text{ of success}$$

$$= \text{Bin}(n, p')$$
Thus, we can apply Chernoff bound for $\text{Bin}(n, p')$ and obtain:

$$\Pr(|X - np'| \geq \varepsilon n \text{ in exact case})$$

$$\leq e^{r^{1/2}} \Pr(|X - np'| \geq \varepsilon n \text{ in Poisson case})$$

$$= e^{r^{1/2}} \Pr(|\text{Bin}(n, p') - np'| \geq \varepsilon n)$$

$$\leq e^{r^{1/2}} 2e^{-n\varepsilon^2/3p'} \leq 0.00001 \text{ when } n \text{ is large}$$
Thus, when n is large, the actual fraction of 0, X/n, is very close to p', w.h.p.

Also, recall: $p' = (1 - 1/n)^{km}$ and $p = e^{-km/n}$

so that $p' \approx p$

\Rightarrow actual fraction of 0 is very close to p
\Rightarrow previous assumption is true w.h.p.
Suppose n users run their programs on a server and want to get the running times.

In order to measure the time accurately, they agree to use the server sequentially, one program at a time.

Of course, each user wants to be scheduled as early as possible …

Question: How can we decide a permutation of the users quickly and fairly?
Breaking Symmetry (2)

We can use hashing to help!

1. Create a hash function \(f \) that maps each user to one of the \(2^b \) bins (i.e., hash a user into a number between \([1, 2^b]\))

2. Sort users based on their hash values

For this scheme to work, we do not want two users to have the same hash value

\[\Rightarrow \text{this should happen w.h.p. when } b \text{ is large} \]
Assume that the hash function is good (which appears random and independent)

Probability that a particular user receive a hash value same as some other user is:

$$1 - (1 - 1/2^b)^{n-1} \leq (n-1)/2^b$$

Thus, by union bound,

$$\Pr(\text{all users has distinct hash value}) \geq 1 - n(n-1)/2^b$$

$$\geq 1 - 1/n \quad \text{... when } b = 3 \log n$$
Breaking Symmetry (4)

Advantage: Extremely flexible!
New user can join at any time, as long as they do not have the same hash value as the existing users

Related problem:
Selecting a leader from n people

\Rightarrow If we have a good hash function, we can hash each user and select one with smallest value to be the leader

In this case, what should b be? (Ex. 5.25)