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ABSTRACT
Inverted indexes are the most fundamental and widely used
data structures in information retrieval. For each unique
word occurring in a document collection, the inverted index
stores a list of the documents in which this word occurs.
Compression techniques are often applied to further reduce
the space requirement of these lists. However, the index
has a shortcoming, in that only predefined pattern queries
can be supported efficiently. In terms of string documents
where word boundaries are undefined, if we have to index all
the substrings of a given document, then the storage quickly
becomes quadratic in the data size. Also, if we want to apply
the same type of indexes for querying phrases or sequence of
words, then the inverted index will end up storing redundant
information. In this paper, we show the first set of inverted
indexes which work naturally for strings as well as phrase
searching. The central idea is to exclude document d in the
inverted list of a string P if every occurrence of P in d is
subsumed by another string of which P is a prefix. With this
we show that our space utilization is close to the optimal.
Techniques from succinct data structures are deployed to
achieve compression while allowing fast access in terms of
frequency and document id based retrieval. Compression
and speed tradeoffs are evaluated for different variants of
the proposed index. For phrase searching, we show that our
indexes compare favorably against a typical inverted index
deploying position-wise intersections. We also show efficient
top-k based retrieval under relevance metrics like frequency
and tf-idf.
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and Text Processing]: Index Generation

General Terms
Algorithms, Experimentation

1. INTRODUCTION
The most popular data structure in the field of Informa-

tion Retrieval is the inverted index. For a given collection
of documents, the index is defined as follows. Each word
in this collection is called a term and corresponding to each
term we maintain a list, called inverted list, of all the doc-
uments in which this word appears. Along with each doc-
ument in this list we may store some score which indicates
how important the document is with respect to that word.
Different variants of the inverted index sort the documents
in the inverted lists in a different manner. For instance,
the sorting order may be based on the document ids or the
scores. Compression techniques are often applied to further
reduce space requirement of these lists. However, inverted
index has a drawback that it can support queries only on
predefined words or terms. As a result, it cannot be used to
index documents without well-defined word boundaries.

Different approaches have been proposed to support phrase
searching using an inverted index. One strategy is to main-
tain the position information in the inverted list. That is,
for each document d in the inverted list of a word w, we store
the positions at which w occurs in d. The positions corre-
sponding to each d in the list can be sorted so as to achieve
compression (using encoding functions like gap, gamma, or
delta) [15]. To search a phrase, we first search for all the
words in the phrase and obtain the corresponding inverted
lists. The positions of each word within a document are ex-
tracted, so that we can then apply an intersection algorithm
to retrieve those documents where these words are appear-
ing in the same order as in the phrase. Another (naive)
approach is to store inverted lists for all possible phrases,
however, the resulting index size will be very large thus pro-
hibiting its use in practice [38]. Different heuristics are pro-
posed in this respect, such as maintaining the inverted lists
only for popular phrases, or maintaining inverted lists of all



phrases up to some fixed number (say h) of words. Another
approach is called “next-word index” [36, 3, 4, 37], such that
corresponding to each term w, a list of all the terms which
occurs immediately after w is maintained. This approach
will double the space, but it can support searching of any
phrase with two words efficiently. Nevertheless, when the
phrase goes beyond two words, we have to fall back to the
intersection algorithm.

In this paper, we first introduce a variant of inverted index
which naturally works for string as well as phrase searching.
Our index does not assume any restrictions on the length or
the popularity of the phrases. In addition, by avoiding the
use of the intersection algorithm we achieve provable bounds
for the query answering time with respect to the output size.
Furthermore, we show different heuristics and compression
techniques to make our index space-efficient. For a collection
of English documents, the size of our index for strings and
for phrases are ≈ 5 times and ≈ 2 times, respectively, of that
of the input data, while it can support document retrievals
in 10-40 microseconds per document in ranked order.

2. RELATED WORK
Suffix trees and suffix arrays are efficient data structures

which can be used to index a text and support searching for
any arbitrary pattern. These data structures can be main-
tained in linear space and can report all the occurrence of a
pattern P in optimal (or nearly optimal) time. The space-
efficient versions of suffix trees and suffix arrays are called
compressed suffix trees and compressed suffix arrays, respec-
tively, which take space close to the size of the indexed text.
From a collection D of |D| documents {d1, d2, ..., d|D|} of to-
tal length n, the problem of reporting documents containing
a query pattern P is called the “document listing” problem.
This problem was first studied by Matias et al. [21], where
they proposed a linear space index with O(p logn+ |output|)
query time; here, p denotes the length of the input pattern
P and |output| denotes the number of the qualified docu-
ments in the output. An index with optimal O(p+ |output|)
query time was later achieved in [24]. Sadakane [31] showed
how to solve the document listing problem using succinct
data structures, which take space very close to that of the
compressed text. He also showed how to compute the tf-
idf [2] of each document with the proposed data structures.
Similar work was also done by Välimäki and Mäkinen [33]
where they derived alternative succinct data structures for
the problem.

In many practical situations, we may be interested in only
a few documents which are highly relevant to the query.
Relevance ranking refers to the ranking of the documents
in some order, so that the result returned first is what the
user is most interested. This can be the document where
the given query pattern occurs most number of times (fre-
quency). The relevance can also be defined by a similarity
metric, such as the proximity of the query pattern to a cer-
tain word or to another pattern. This problem is modeled
as top-k document retrieval, where the task is to retrieve
the k highest scoring documents based on some score func-
tion. An O(n logn) words index has been proposed in [16]
with O(p+log |D| log log |D|+ k) query time. Hon et al. [18]
proposed a linear-space index (O(n) words) with nearly op-
timal O(p + k log k) query time. Yet, the constants hidden
in the space bound restricts its use in practice. Culpepper
et al. [8] proposed a space-efficient practical index based on

wavelet trees [13], but their query algorithm is based on a
heuristic, so that it does not guarantee any worst-case query
performance.

The most popular ranking function in web search applica-
tions is tf-idf [2]. Under the tf-idf model, Persin et al. [28]
give different heuristics to support top-k ranked retrieval
when the inverted lists are sorted in decreasing order of the
tf score. Various generalizations of this are studied by Anh
and Moffat [1] under the name “impact ordering”. In [25],
Navarro and Puglisi showed that wavelet trees can be used
for maintaining dual-sorted inverted lists corresponding to
a word, where the documents can efficiently be retrieved
in score order or in document id order. Recently, Hon et
al. [17] proposed an index for answering top-k multi-pattern
queries. On a related note, top-k color query problems (with
applications in document retrieval) have been studied in [12,
20].

3. PRELIMINARIES

3.1 Suffix Trees and Compressed Suffix Trees
Given a text T [1...n], a substring T [i...n] with 1 ≤ i ≤ n

is called a suffix of T . The lexicographic arrangement of
all n suffixes of T in a compact trie is known as the suffix
tree of T [35], where the ith leftmost leaf represents the
ith lexicographically smallest suffix. Each edge in the suffix
tree is labeled by a character string and for any node u,
path(u) is the string formed by concatenating the edge labels
from root to u. For any leaf v, path(v) is exactly the suffix
corresponding to v. For a given pattern P , a node u is
defined as the locus node of P if it is the node u closest
to the root such that P is a prefix of path(u); such a node
can be determined in O(p) time, where p denotes the length
of P . The generalized suffix tree (GST) is a compact trie
which stores all suffixes of all strings in a given collection D
of strings. The drawback of the suffix tree is its huge space
consumption, which requires O(n logn) bits in theory. Yet,
it can perform pattern matching in optimal O(p + |output|)
time, where |output| is the number of occurrences of P in T .
Compressed suffix tree (CST) is a space-efficient version of
suffix tree. Several variants of CSTs have been proposed to
date [23, 14, 32, 30, 11, 27, 34, 6, 26].

3.2 Range Minimum/Maximum Query (RMQ)
Let A[1...n] be an array of length n. The RMQ index

is a linear-space data structure which can return the posi-
tion and the value of the minimum (maximum) element in
any subrange A[i..j] such that 0 ≤ i ≤ j ≤ n. Although
solving RMQ can be dated back from Chazelle’s original pa-
per on range searching [7], many simplifications [5] and im-
provements have been made, culminating in Fischer et al.’s
2n+o(n) bit data structure [9, 10]. All these schemes can an-
swer RMQ in O(1) time. We shall use RMQ data structures
extensively to report the desired documents while answer-
ing our query. The basic result is captured in the following
lemma [18]:

Lemma 1. Let A be an array of numbers. We can pre-
process A in linear time and associate A with a linear-space
RMQ data structure such that given a set of t non-overlapping
ranges [L1, R1], [L2, R2], ..., [Lt, Rt], we can find the largest
(or the smallest) k numbers in A[L1, R1] ∪ A[L2, R2] ∪ ... ∪
A[Lt, Rt] in O(t + k log k) time.



4. INVERTED INDEX FOR STRINGS AND
PHRASES

In traditional inverted indexes, phrase queries are per-
formed by first retrieving the inverted list for each word in
the phrase and then applying an intersection algorithm to
retrieve those documents in which the words in are appear-
ing in the same order as in the phrase. Unfortunately, there
is no efficient algorithm known which performs this inter-
section in time linear to the size of the output. Another
limitation of the traditional inverted indexes is that they
do not support string documents where there is no word
demarcation (that is, when a query pattern can begin and
end anywhere in the document). A naive approach to ad-
dress these issues is to maintain inverted lists for all possible
phrases (or strings). In the next subsection, we introduce a
simple index that is based on a suffix tree and augments this
with the inverted lists. This index can answer the queries
in optimal time, however, the space is a factor of |D| away
from the optimal. As phrase is a special case of a string
(that is, string that starts and ends at word boundaries), we
will explain our indexes in terms of strings.

4.1 Inverted Lists
Let D={d1, d2, ..., d|D|} be the collection of documents of

total length n drawn from an alphabet set Σ, and ∆ be
the generalized suffix tree of D. Let u be the locus node
of a pattern P . Now a naive solution is to simply maintain
an inverted list for the pattern corresponding to path(u) for
all internal nodes u in ∆. The list associated with a node
u consists of pairs of the form (dj , score(path(u), dj)) for
j = 1, 2, 3, ..., |D|, where the score of a document dj with re-
spect to pattern P = path(u) is given by score(path(u), dj).
We assume that such a score is dependent only on the oc-
currences of P in the document dj . An example of such a
score metric is frequency, so that score(P, dj) represents the
number of occurrences of pattern P in document dj . For a
given online pattern P , the top-k highest scoring documents
can be answered by reporting the first k documents in the
inverted list associated with the locus node of P , when the
inverted lists are sorted by score order. Since the inverted
list maintained at each node can be of length |D|, the total
size of this index is O(n|D|). Though this index offers op-
timal query time, it stores the inverted list for all possible
strings. In the next subsection we show how the inverted
lists can be stored efficiently in a total of O(n) space.

4.2 Conditional Inverted Lists
The key idea which leads to O(n) storage for inverted lists

is the selection of nodes in the suffix tree for which inverted
lists are actually maintained. We begin with the following
definitions.

• Maximal String: A given string P is maximal for doc-
ument d, if there is no other string Q such that P is a
prefix of Q and every occurrence of P in d is subsumed
by Q.

• Conditional Maximal String: Let Q be a maximal string
for which P is a prefix and there is no maximal string
R such that R is in between P and Q. That is P is a
prefix of R and R is a prefix of Q. Then we call Q a
conditional maximal string of P .

Consider the following sample documents d1, d2, and d3:

• d1: This is a cat. This is not a monkey. This is not a
donkey.

• d2: This is a girl. This is a child. This is not a boy.
This is a gift.

• d3: This is a dog. This is a pet.

Note that “This is ” is maximal in d1 as well as d2, but
not in d3. The conditional maximal strings of “This is ” in
d1 are “This is a cat ... donkey.” and “This is not a ”. The
conditional maximal strings of “This is ” in d2 are “This is
a ” and “This is not ... gift.”.

Lemma 2. The number of maximal strings in a document
dj is less than 2|dj |.

Proof. Consider the suffix tree ∆j of document dj . Then
for each maximal string P in dj , there exists a unique node u
in ∆j such that path(u) = P . Thus the number of maximal
strings in dj is equal to the number of nodes in ∆j .

Lemma 3. For a given pattern P , we have score(P, dj) =
score(Pi, dj), where Pi is the shortest maximal string in dj
with P as prefix. If such a string Pi does not exist, then
score(P, dj) = 0.

Proof. As Pi is the shortest maximal string in dj with
P as prefix, every occurrence of a pattern P in dj is sub-
sumed by an occurrence of pattern Pi. Hence both patterns
will have the same score with respect to document dj , with
score(P, dj) = 0 signifying that the pattern P does not occur
in dj .

Lemma 4. For every maximal string Q( 6= empty string)
in dj, there exists a unique maximal string P such that Q is
a conditional maximal string of P .

Proof. Corresponding to each maximal string Q in dj ,
there exists a node u in ∆j (suffix tree of document dj)
such that Q = path(u). The lemma follows by setting P =
path(parent(u)), where parent(u) denotes the parent of u in
∆j .

The number of maximal strings in D={d1, d2, ..., d|D|} is
equal to the number of nodes in ∆ (Lemma 2). In the
context of maximal strings, the index in Section 4.1 main-
tains inverted lists for all maximal strings in D. However,
score(P, dj) depends only on pattern P and document dj .
This gives the intuition that, for a particular document dj ,
instead of having entries in inverted lists corresponding to
all maximal strings in D, it is sufficient to include dj in
the inverted lists of only those strings which are maximal
in dj . Thus, for each document dj , there will be at most
2|dj | entries in all inverted lists, so that the total number
of such entries corresponding to all documents is at most∑|D|

j=1 2|dj | = O(n). However, the downside of this change
is that the simple searching algorithm used in Section 4.1
can no longer serve the purpose. Therefore, we introduce a
new data structure called “conditional inverted lists”, which
is the key contribution of this paper.

From now onwards, we refer to the maximal strings by
the pre-order rank of the corresponding node in ∆. That is
Pi = path(ui), where ui is a node in ∆ with pre-order rank
i. In contrast to the traditional inverted list, the conditional
inverted list maintains score(Pi, dj) only if Pi is maximal in



dj . Moreover score(Pi, dj) is maintained not with Pi, but
instead with Px, such that Pi is a conditional maximal string
of Px in dj . Therefore, ux will be a node in the path from
root to ui. Formally, the conditional inverted list is an array
of triplets of the form (string id, document id, score) sorted
in the order of string-ids, where the string-id is pre-order
rank of a node in ∆. A key observation is the following:
The conditional inverted list of a string Px has an entry
(i, j, score(Pi, dj)) if and only if Pi is a conditional maximal
string of Px in document dj . From the earlier example, the
conditional inverted list of “This is ” has entries correspond-
ing to the following strings. We assign a string id to each
of these strings (for simplicity) and let the score of a string
corresponding to a document be its number of occurrences
in that document.

“This is a cat ... donkey.” (string id = i1, score in d1 = 1)
“This is not a ” (string id = i2, score in d1 = 2)
“This is a ” (string id = i3, score in d2 = 3)
“This is not a ... gift.” (string id = i4, score in d2 = 1)

Since the string ids are based on the lexicographical or-
der, i3 < i1 < i2 < i4. Then the conditional inverted list
associated with the string “This is ” is given below. Note
that there is no entry for d3, since “This is ” is not maximal
in d3.

string id i3 i1 i2 i4
document id d2 d1 d1 d2
score 3 1 2 1

We also maintain an RMQ (range maximum query) struc-
ture over the score field in the conditional inverted lists so
as to efficiently retrieve documents with highest score as ex-
plained later in following subsection.

Lemma 5. The total size of conditional inverted lists is
O(n).

Proof. Corresponding to each maximal string in dj , there
exists an entry in the conditional inverted list with document
id j. Hence the number of entries with document id as j is
at most 2|dj | and the total size of conditional inverted lists

is O(
∑|D|

j=1 2|dj |) = O(n).

Lemma 6. For any given node u in ∆ and any given
document dj associated with some leaf in the subtree of u,
there will be exactly one string Pi such that (1) Pi is max-
imal in dj, (2) path(u) is a prefix of Pi, and (3) the triplet
(i, j, score(Pi, dj)) is stored in the conditional inverted list of
a node ux 6= u, where ux is some ancestor of u.

Proof. Since there exists at least one occurrence of dj
in the subtree of u, Statements (1), (2), and (3) can be eas-
ily verified from the definition of conditional inverted lists.
The uniqueness of Pi can be proven by contradiction. Sup-

pose that there are two strings P
′
i and P

′′
i satisfying all

of the above conditions. Then path(u) will be a prefix of

P ∗i = lcp(P
′
i , P

′′
i ), where lcp is the longest common prefix.

Then from the one-to-one correspondence that exists be-
tween maximal strings and nodes in suffix tree (Lemma 2),
it can be observed that the lcp between two maximal strings
in a document dj is also maximal. Thus P ∗i is maximal in

dj and this contradicts the fact that, when P
′
i (or P

′′
i ) is a

conditional maximal string of Px, there cannot be a maxi-

mal string P ∗i , such that P ∗i is a prefix of P
′
i and Px is a

prefix of P ∗i .

4.3 Answering Top-k Queries
Let P be the given online pattern of length p. To answer

a top-k query, we first match P in ∆ in O(p) time and
find the locus node ui. Let ` = i and r be the pre-order
rank of the rightmost leaf in the subtree of ui. That is, P`

and Pr represents the lexicographically smallest and largest
maximal strings in D with path(ui) as a prefix. Then, all
maximal strings with P as prefix can be represented by Pz,
` ≤ z ≤ r. From Lemmas 4 and 6, for each document dj
which has an occurrence in the subtree of ui, there exists
a unique triplet with score score(P, dj) in the conditional
inverted list of some ancestor node ux of ui with string id ∈
[`, r]. Now the top-k documents can be retrieved by first
identifying such triplets and then retrieving the k highest
scored documents.

Note that the triplets in the conditional inverted lists are
sorted according to the string-ids. Hence by performing a
binary search of ` and r in the conditional inverted list asso-
ciated with each ancestor of ui, we obtain t non-overlapping
intervals [`1, r1], [`2, r2], ..., [`t, rt], where t < p is the num-
ber of ancestors of ui. Using an RMQ (range maximum
query) structure over the score field in the conditional in-
verted lists, the k triplets (thereby documents) correspond-
ing to the k highest scoring documents can be retrieved in
O(t + k log k) time (Lemma 1). Hence the total query time
is O(p) + O(t logn) + O(t + k log k) = O(p logn + k log k).

Theorem 1. The String Inverted Index for a collection
of documents D = {d1, d2, ..., d|D|} of total length n can be
maintained in O(n) space, such that for a given pattern P
of length p, the top-k document queries can be answered in
O(p logn + k log k) time.

Note that the same structure can be used for document
listing problem [24], where we need to list all the documents
which has an occurrence of P . This can be answered by
retrieving all the documents corresponding to the intervals
[`1, r1]∪ [`2, r2]∪ ...∪ [`t, rt] in the conditional inverted lists.
Hence the query time is O(p logn+ docc), where docc is the
number of documents containing P . If our task is to just
find the number of such documents (counting, not listing),
we may use docc =

∑t
i=1(ri− `i), and can answer the query

in O(p logn) time.

Theorem 2. Given a query pattern P of length p, the
document listing queries for a collection of documents D =
{d1, d2, ..., d|D|} of total length n can be answered in O(p logn+
docc) time, where docc is the number of documents contain-
ing P . The computation of docc (document counting) takes
only O(p logn) time.

The index described in this section so far is a generalized
index for string documents. When word boundaries are well-
defined and query patterns will be aligned with word bound-
aries as well, we can build the inverted index for phrases by
replacing the generalized suffix tree with a word suffix tree.
A word suffix tree is a trie of all suffixes which start from a
word boundary. Now we maintain the conditional inverted
lists corresponding to only those strings which start from a
word boundary, thus resulting in huge space savings. We



call this a phrase inverted index. Theorems 1 and 2 can be
rewritten for phrase inverted index as follows.

Theorem 3. The Phrase Inverted Index for a collection
of documents D = {d1, d2, ..., d|D|} with total N suffixes,
which start from a word boundary, can be maintained in
O(N) space, such that for a given pattern P of length p,
the top-k, document listing, and document counting queries
can be answered in O(p logN + k log k), O(p logN + docc)
and O(p logN) time, respectively.

5. PRACTICAL FRAMEWORKS
In Section 4, we introduced the theoretical framework for

our index. However, when dealing with the practical perfor-
mance, the space and time analysis has to be more precise
than merely a big-O notation. Consider a collection of En-
glish text documents of total length n, where each character
can be represented in 8 bits (256 characters, including num-
bers and symbols corresponding to all ASCII values). Then
the text can be maintained in 8n bits. The conditional in-
verted list can consist of at most 2n triplets and if each entry
in the triplet is 32 bits (word in computer memory), then
the total size of the conditional inverted lists can be as big
as (2n × 3 × 32) bits = (24 × 8n) bits = 24 × (datasize).
Moreover, we also need to maintain the generalized suffix
tree, which takes ≈20-30 times of the text size. Hence the
total index size will be ≈ 50×(datasize). This indicates that
the hidden constants in big-O notation can restrict the use
of an index in practice especially while dealing with massive
data.

In this section, we introduce a practical framework of
our index when frequency is used as score metric. That
is, score(P, dj) represents the number of occurrences of pat-
tern P in document dj . However, the ideas used can also
be applied for other measures. Based on different tools and
techniques from succinct data structures, we design three
practical versions of our index (index-A, index-B, index-C)
each successively improving the space requirements. We try
to achieve the index compression by not sacrificing too much
on the query times. Index-C takes only ≈ 5×(datasize), and
even though it does not guarantee any theoretical bounds on
query time, it outperforms the existing indexes [8] for top-k
retrieval.

5.1 Index-A
Index-A is a direct implementation of our theoretical in-

dex from Section 4 with one change. As suffix tree is being
used as an independent component in the proposed index,
we replace it by compressed suffix tree (CST) without affect-
ing the index operations and avoid the huge space required
for suffix tree. We treat index-A as our base index as it does
not modify the conditional inverted lists which form the core
of the index.

5.2 Index-B
In this version, we apply different empirical techniques

to compress each component of the triplets from the condi-
tional inverted list separately.

• Compressing Document Array: Taking into account
that fact that the total number of documents is |D|,
we use only dlog |D|e bits (instead of an entire word)
per entry for the document value.

• Compressing Score Array: When pattern frequency is
used as the score metric, score array consists of num-
bers ranging from 1 to n. The most space-efficient way
to store this array would be to use exactly the minimal
number of bits for each number with some extra infor-
mation to mark the boundaries. But this approach
may not be friendly in terms of retrieving the values.
Our statistical studies showed that more than 90% of
entries have frequency values less than 16 (which needs
only 4 bits). This leads us to the heuristic for distribut-
ing frequency values into four categories: a) 1-4 bits,
b) 5-8 bits, c) 9-16 bits, and d) 17-32 bits based on the
actual number of bits required to represent each value.
We use a simple wavelet tree structure [13] which first
splits the array into two arrays, one with 1-8 bits and
another with 9-32 bits, required per entry. Both ar-
rays are further divided to cover the categories a, b
and c, d, respectively. Each of the child nodes can be
further divided into two. The values stored at the leaf
nodes of the wavelet tree take only as many bits as
represented by the category it belongs to. Further, we
use rank-select [22, 29] structures on the bit vectors in
the wavelet tree for fast retrieval of values.

• Compressing String-id Array: Since the entries in the
conditional inverted lists are sorted based on string-
id values, we observe that there will be many con-
secutive entries of the same string-id, each with dif-
ferent document-id. Therefore run-length encoding is
a promising technique for string-id compression. In
order to support fast retrieval of a particular string-
id value, we again maintain additional bit vectors to
keep track of which string-id values are stored explic-
itly and which values are eliminated due to repetition
in the conditional inverted lists.

5.3 Index-C
In our final efforts to further reduce the space required for

the index, the following two observations play an important
role.

• Approximately 50% of the entries from all the condi-
tional inverted lists in the index, have string-id corre-
sponding to leaf node in ∆ and have low score value
(frequency of one).

• The document array, which is a part of the triplet in
the conditional inverted lists, does not contribute in
the process of retrieving top-k answers and is used only
during reporting to identify the documents with high-
est score.

It follows from the first observation that pruning the con-
ditional inverted list entries corresponding to leaf nodes would
significantly reduce the index space. In particular, we do not
store those triplets whose string-id field corresponds to a leaf
node in ∆. The downside of this approach is that, the mod-
ified index will no longer be able to report the documents
with frequency of one. However, this shortcoming can be
justified by reductions in space, and algorithmic approach
can be employed to retrieve such documents if needed.

From the second observation, we can choose to get rid
of the document-id field and incur additional overhead dur-
ing query time. Briefly speaking, the document-id in the



triplet corresponding to an internal node (string-id = pre-
order rank of that internal node) is not stored explicitly in
the conditional inverted lists. The string-id of a triplet in a
conditional inverted list associated with a node ui is replaced
by a pointer which points to another triplet associated with
the highest-descendent node in the subtree of ui with the
same document-id. Now the triplets in the conditional in-
verted lists are sorted according to the value of this pointers.
Retrieval of the document-id can be done in an online fash-
ion by chasing pointers from an internal node up to the leaf
corresponding to that document. (Details are deferred to
the full paper).

Index-C makes use of both ideas simultaneously. Even
though the modifications do not guarantee any theoretical
bounds on query time (which can be O(n) in worst case),
we observed that index-C performs well in practice.
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Figure 1: Space comparison of the indexes

6. EXPERIMENTAL ANALYSIS
We evaluated our new index and its compressed variants

for space and query time using english texts and protein col-
lections. ENRON is a ≈100MB collection of 48619 email mes-
sages drawn from a dataset prepared by the CALO Project
(http://www.cs.cmu.edu/~enron/). PROTEIN is a concate-
nation of 141264 Human and Mouse protein sequences total-
ing ≈60MB (http://www.ebi.ac.uk/swissprot). We im-
plemented all of the above indexes using the programming
language C++, compiled with the g++ compiler version 4.2.
Public code libraries at http://www.uni-ulm.de/in/theo/

research/sdsl.html and http://pizzachili.dcc.uchile.

cl/indexes.html are used to develop some of the compo-
nents in the indexes. Our experiments were run on an Intel
Core 2 Duo 2.26GHz machine with a 4GB RAM. The OS
was MAC OS X using version 10.6.5. In the following, we
first analyze the space-time tradeoffs for various indexes de-
scribed in this paper. Then we empirically compare these
indexes with the inverted index when word boundaries are
well defined and query patterns are aligned on word bound-
aries.

6.1 Space-Time Tradeoffs
Figure 1 shows the space requirements for the original

index and its compressed variants against input text size
for both datasets. Reduction in the space requirements

for index-B and index-C can be analyzed separately for the
three key components of the indexes: Document array, score
array and string-id-array. Figure 2 shows the space utiliza-
tion of these components for each of the proposed indexes.
For both document array and score array, even though it is
possible to use the theoretically-minimal number of bits re-
quired per entry, it would result in a slowdown in the query
time due to the lacking of efficient mechanisms for the re-
trieval of the array values. In index-B, recall that we try
to keep the encoding simple and do not compress the data
to the fullest extent so as to achieve reasonable compres-
sion and restrict query time within acceptable limit simul-
taneously. In particular, as most of the values in the score
(frequency) array (≈ 97% for ENRON, ≈ 98% for PROTEIN)
are less than 16, the proposed heuristic for compressing the
score array in index-B achieves a very good practical perfor-
mance. Out of three components, string-id array is the least
compressible as its values correspond to the pre-order ranks
of nodes in the suffix tree with ranges from 0 to |T | = n.
We can utilize the fact that string-id array entries for a node
are sorted in the increasing order by using difference encod-
ing (such as gap) for efficient compression. However, such
a method would naturally incur a query time overhead. In-
stead, as mentioned in the previous section, index-B makes
use of the run-length encoding to represent the consecutive
entries with the same string-id value, and was able to elim-
inate ≈ 30% string-id array entries for ENRON and ≈ 25%
string-id array entries for PROTEIN in our experiments. Us-
ing these compression techniques, index-B is ≈ 10 times the
text as compared to index-A (≈ 20 times text).

Recall that index-C does not store the document id for
each entry explicitly to achieve space savings, at the expense
of a slightly longer time to report the documents. Space sav-
ings are also achieved when we prune the inverted list entries
corresponding to the leaf nodes, which account for 50% in
ENRON and 55% in PROTEIN of the total number of entries.
As a result, index-C improves further on index-B and takes
only ≈ 5 times of the text in the space requirement.

For these experiments, 250 queries from ENRON and 125
queries from PROTEIN, which appear in at least 10 documents
with frequency 2 or more, are generated randomly for pat-
tern lengths varying from 3 to 10. This therefore forms a
total of 2000 and 1000 sample queries for ENRON and PRO-

TEIN, respectively. In addition, we ensure that the selected
patterns of length 3 appear in at least 80 documents to ob-
serve the practical time in reporting top-k (k = 10, 20, ...,
80) documents. Figure 3 shows the average time required to
retrieve k = 10 documents with highest score (frequency) for
patterns with varying lengths. Average time required for re-
trieving documents in descending order of score (frequency)
for a set of patterns with length 3 is shown in Figure 4 for
varying k. These figures show that space savings achieved by
the successive variants of our index (with increasing level of
compression) will not hurt the query time to a great extent.
A nearly linear dependance of query time on pattern length
and k can also be observed from these figures. Matching
the pattern P in compressed suffix tree ∆ and binary search
to obtain intervals in conditional inverted list of nodes in
compressed suffix tree during top-k retrieval dominates the
query time for index-A. Occasional slight drop in the query
time for the indexes for increasing pattern length can be at-
tributed to the binary search as it depends on the number
of documents in which the query pattern is present. Query
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Figure 3: Mean time to report top-10 documents with highest frequency for a set of queries of varying lengths

timings for index-B closely follow to that of index-A, with
decoding the score (frequency) values for possible top-k can-
didates being primarily responsible for the difference. Index-
C has an additional overhead of decoding the document-id
for each top-k answer to be reported. As a result, the gap
in the query time of index-C with the other indexes should
gradually increase with k, as is observed in the Figure 4.

6.2 Word/Term Based Search
In this subsection, we compare our phrase indexes with

the traditional inverted index, highlighting the advantages
of the former ones over the latter one. For a fair compari-
son, our proposed indexes in this subsection are built on the
word suffix tree instead of the generalized suffix tree (Theo-
rem 3) so as to support searching of only those patterns that
are aligned with the word boundaries. We begin by compar-
ing the query times. Traditional inverted index are known
to be efficient for single-word searching. When the inverted
lists are each sorted in descending order of score, ranked re-
trieval of documents would simply return the initial entries
from the list corresponding to the query word. However,
for efficient phrase searching, sorting the document lists by
document-id (instead of score) would allow faster intersec-
tions of multiple lists. Figure 5 shows the time required for
retrieving top-10 documents with highest score (frequency)
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for a set of phrases consisting of two and three words, respec-
tively. Here, we generated 800 additional queries aligned on
english word boundaries from ENRON. Traditional inverted in-
dex has its inverted lists sorted according to the document
ids as mentioned, and we apply finger binary search [19]
for intersecting multiple lists. We do not report the results
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when inverted lists are sorted by score as the timings were
significantly worse. Figure 5 show that our phrase indexes
perform much better than the intersection-based retrieval,
and the performance degradation in traditional inverted in-
dex would become more serious with the increase in words
in a phrase query. Query times of our string/phrase indexes
show that its query time for reporting top-10 documents is
in the range of 100-400 microseconds thus achieving good
practical performance.

A key point behind the widespread usage of the inverted
index is that it can be stored in little space when compared
with the size of input document collection; 20%-60% or more
depending on whether it includes the position lists. One
way to avoid the intersection of position lists in the phrase
queries would be to store inverted list of all phrases up to
some fixed number (say h) of words. Such an index still has
to reply on intersection for phrases with more than h words.
Figure 6 shows the space requirement for this variant of in-
verted index without the position lists. From the figure, it
is clear that the space required for such a solution gradu-
ally increases with h and directly depends on the number of
distinct phrases in the input text. In contrast, our phrase
index supports phrase searching with arbitrary number of
words. In the most space-efficient version of our phrase in-

dex (index-C), it takes just under 2 times of the input text
in space. With gradual increase in space required, the tradi-
tional inverted index for phrases up to h words occupies more
space than index-C for all h ≥ 5. It is important to note
that the traditional inverted index is maintained as an ad-
ditional data structure along with the original text, whereas
our proposed indexes are self indexes and do not need origi-
nal text. Thus our phrase index compares favorably against
the traditional inverted index for phrase searching in prac-
tice.

7. TOP-k TF-IDF QUERIES
In web search engines, tf-idf (term frequency–inverse doc-

ument frequency) [2] is one of the most popular metric for
relevance ranking. The query consists of multiple keywords
(patterns) say P1, P2, ..., Pm and the score of a document d,
score(d), is given by

score(d) =

m∑
i=1

tf (Pi, d)× idf (Pi),

where a) tf (Pi, d) denotes the number of occurrences of Pi in

d, and b) idf (Pi) = log |D|
1+docc(Pi)

, with |D| representing the

total number of documents and docc(Pi) representing the



number of documents containing pattern Pi. Many other
versions of this metric are available in the literature. For
top-k document retrieval that is based on the tf-idf metric
(with multiple query patterns), most of the existing solu-
tions are based on heuristics. When the query consists of a
single pattern, the inverted index with document lists sorted
in score order can retrieve top-k documents in optimal time.
However, for an m-pattern query (a query consisting of m
patterns say P1, P2, ..., Pm), we may need the inverted lists
sorted according to the document id as well. In this section,
we introduce an exact algorithm and compare the results ob-
tained by applying it to inverted index as well as our index
(index-B). Although our algorithm does not guarantee any
worst-case query bounds, the focus is to explore the capa-
bilities of our index as a generalized inverted index. Along
with our index, we make use of a wavelet tree [13] over the
document array for its advantages in offering dual-sorting
functionalities. We restrict the query patterns to be words
in order to give a fair comparison between our index and the
inverted index.

Suppose that N denotes the number of suffixes in the word
suffix tree. Let DA[1...N ] be an array of document ids, such
that DA[i] is the document id corresponding to ith small-
est suffix (lexicographically) in the word suffix tree. Note
that each entry in DA takes at most dlog |D|e bits to store.
Therefore a wavelet tree W-Tree of DA can be maintained
in N log |D|(1 + o(1)) bits. Now, given the suffix range [`, r]
of any pattern P , the term frequency tf (P, dj) for the doc-
ument with id j can be computed by counting the number
of entries in DA with DA[i] = j and ` ≤ i ≤ r. This
query can be answered in O(log |D|) time by exploring the
orthogonal range searching functionality of W-Tree. Since
term frequency in any document can be computed using W-
Tree, we do not store the score (term frequency) array in
index-B. This slightly compensates for the additional space
overhead due to W-Tree. Inverse document frequency idf
can be computed using Theorem 3. For simplicity, we de-
scribe the algorithm for two pattern queries (P1 and P2) as
follows, and the algorithm can be easily extended for the
general m-pattern queries. Let Sans and Sdoc be two sets of
documents which are set to empty initially, and let dk1 and
dk2 represents the kth highest scoring document correspond-
ing P1 and P2, with term frequency as the score function
and score(d) = tf (P1, d) idf (P1) + tf (P2, d) idf (P2).

Sans = Sdoc = {}, x = y = 1
while |Sans | < k do

if score(dx1) ≥ score(dy2) then
Sdoc ← Sdoc ∪ dx1 and x← x + 1

else
Sdoc ← Sdoc ∪ dy2 and y ← y + 1

end if
if |Sdoc | = 1, 2, 4, 8, 16, ... then

scoremax = tf (P1, d
x
1) idf (P1) + tf (P2, d

y
2) idf (P2)

for each d ∈ Sdoc do
if score(d) ≥ scoremax and d /∈ Sans then

Sans ← Sans ∪ d
end if

end for
end if

end while
Choose k documents in Sans with the highest score value

The main idea of the algorithm is to maintain a list of
candidate top-k documents in the set Sdoc , and refine the
candidate set by moving documents to the set Sans from time
to time. Each document in Sans will have score higher than
an imaginary scoremax , and the set Sans will always contain
the highest scoring documents we have examined so far. The
algorithm stops as soon as Sans contains k documents, in
which we report the top-k documents from the set.

Experimental Analysis
We compare the performance of our index against the tra-
ditional inverted index for answering 2-pattern queries us-
ing the algorithm described above. In the traditional in-
verted index, document lists are sorted either by score (fre-
quency) or document-id. To apply the above heuristic, we
need dual-sorted documents lists, where each list is sorted
on both score as well as document-id. Score sorted lists sup-
port ranked retrieval of documents for individual patterns
but tf-idf score can not be computed efficiently. If lists are
sorted by document-id, though tf-idf score computation is
faster, document retrieval in ranked order is not efficient. As
a result we first duplicate the document lists for each of the
pattern Pi and sort them as required. Figure 7 shows the
mean time required for retrieving top-k documents for a set
of 50 2-pattern queries for ENRON such that each pattern is
highly frequent. As observed from the figure, query time for
our index increases faster than that of the inverted index.
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We remark that the major part of the query time used by
the inverted index is on re-sorting the the document lists in
which the query patterns occur. Thus, if the patterns are
not too frequently occurring, the time spent on re-sorting is
reduced, and the advantages of our index over the inverted
index will vanish. Finally, the size of our index is ≈ 3.1
times of the text size.

8. CONCLUDING REMARKS
This paper introduces the first practical version of in-

verted index for string documents. The idea is to store lists
for a selected collection of substrings (or phrases) in a con-
ditionally sorted manner. Succinct data structures are used
to represent these lists so as to reap benefits of dual sort-
ing and achieve good top-k retrieval performance. We show



how top-k tf-idf based queries can be executed efficiently.
Furthermore, our indexes show a space-time advantage over
all of the traditional techniques for searching long phrases.
While this is the first prototype, more research will certainly
help in deriving structures with great practical impact.
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