Theory of Computation
Tutorial II

Speaker: Yu-Han Lyu
October 20, 2006
Closed operations for CFL

- Union
- Concatenation
- Star
- Reverse
- Complement is not closed
- Intersection with regular language
- Difference with regular language
- Quotient with regular language
Right Linear Grammar

• \(A \rightarrow wB \)
• \(A \rightarrow w \)
• Right Linear Grammar = Regular Language
• Left linear ?
Deterministic PDA

- NPDA \neq DPDA
- DPDA \rightarrow Unambiguous
- LR(k)
- How about LL, LALR, SLR??
Assignment 1

• Problem 1
 – Easiest

• Problem 2
 – Special cases: 0, 1, ε

• Problem 7
 – Answer is in textbook
Problem 3

- Assume there exists a pumping length p
- We find a string $s = w^n$, $n > p$, n is prime
- No matter how we divide $s = xyz$
 - $xy|^{n+1}|z = n + n|y| = n(1 + |y|)$, which is not prime
Pumping lemma

• If L is regular language, then there exists a pumping length p, such that for any string s, \(|s|\geq p\) and \(s \in L\), we can divide s into three parts..........

• L is regular \(\rightarrow\)

\[
\{ \exists p \ : \ \forall s \ (|s|\geq p \text{ and } s \in L) \rightarrow \\
[\exists s=xyz \ |y|>0 \text{ and } |xy|\leq p \text{ and } \forall i\geq0 \ xy^iz \in L] \}
\]
To prove L is non-regular

• L is regular →
 \{ \exists p \ \forall s \ (|s| \geq p \text{ and } s \in L) \rightarrow \\
 [\exists s = xyz \ |y| > 0 \text{ and } |xy| \leq p \text{ and } \forall i \geq 0 \ xy^i z \in L] \}

• To prove L is non-regular, we show that: No matter what p is, we can find a string s, |s| \geq p, s \in L. But then, no matter how we divide s into xyz, at least one condition don’t hold.
To prove L is consistent with pumping lemma

- L is regular \rightarrow
 \[
 \{ \exists p \:\forall s \left(|s| \geq p \text{ and } s \in L \right) \rightarrow \]
 \[
 \left[\exists s=xyz \mid |y| > 0 \text{ and } |xy| \leq p \text{ and } \forall _{i \geq 0} xy^i z \in L \right] \}
 \]

- We can find a p, such that for any string s, $|s| \geq p$ and $s \in L$, we can divide it into three parts...
Problem 4

• \(F=\{a^ib^jc^k \mid i, j, k \geq 0, \text{ if } i=1, \text{ then } j=k\} \)

• For any string \(s, s \in F \)
 – if \(s \) is the form \(a^ib^jc^k (i \neq 2) \)
 • \(x=\varepsilon, \ y=\text{first character, } z=\text{remainder ...} \)
 – If \(s \) is the form \(aab^jc^k (i=2) \)
 • \(x=\varepsilon, \ y=aa, z=\text{remainder ...} \)

• What is the pumping length?
Problem 5

• Alternately run in A and B
• Keep the information
 – A and B states \rightarrow A x B
 – The next input will run in A or B \rightarrow {Odd, Even}
Problem 6

- The same as problem 5
- In state \((a, b)\) we can
 - Run on A
 - Run on B
Problem 8

- Non-deterministically guess a final state
- Bidirectional process
 - Forward: Run A
 - Backward: Run A^R
- If end in the same state then accept
Assignment 2

• Due: 2:10 pm, October 31, 2006 (before class)
 – Late submission will not be marked
Problem 1

• Proof of pumping lemma
Problem 2

• $A = \{w \mid 2\#a(w) \neq 3\#b(w), \ w \in \{a,b\}^*\}$

• When read a
 – Push a
 – Eliminate b

• When read b
 – Push b
 – Eliminate a
Problem 3

• Let $C = \{xy \mid x, y \in \{0,1\}^* \text{ and } |x| = |y|, x \neq y\}$. Show that C is a context-free language.

• At least one position is not equal

• The i^{th} position of the first half is not equal to i^{th} position of the second half.

• 4 variables, don’t think too difficult
Problem 4

- Let $A = \{w t w^R \mid w, t \in \{0,1\}^* \text{ and } |w| = |t|\}$. Prove that A is not a context-free language.
- Pumping lemma
Problem 5

• Let L be a context-free language. Then there is a constant p such that for any string z in L with at least p characters, we can mark any p or more positions in z to be distinguished, and then z can be written as $z = uvwxy$, satisfying the following conditions:
 – (i) vwx has at most p distinguished positions.
 – (ii) vx has at least one distinguished position.
 – (iii) For all $i \geq 0$, $u^iwx^i y$ is in L.

• Formal proof for all conditions
Problem 6

• Apply Ogden’s lemma and show that the language $L = \{a^i b^j c^k \mid i = j \text{ or } j = k \text{ where } i, j, k \geq 0\}$ is inherently ambiguous.