CS4311
Design and Analysis of Algorithms
Lecture 13: Greedy Algorithm
About this lecture

• Introduce Greedy Algorithm

• Look at some problems solvable by Greedy Algorithm
Coin Changing

• Suppose that in a certain country, the coin dominations consist of:

 $1, $2, $5, $10

• You want to design an algorithm such that you can make change of any x dollars using the fewest number of coins
Coin Changing

- An idea is as follows:
 1. Create an empty bag
 2. While $x > 0$ {
 - Find the largest coin c at most x;
 - Put c in the bag;
 - Set $x = x - c$;
 }
 3. Return coins in the bag
Coin Changing

• It is easy to check that the algorithm always return coins whose sum is x.

• At each step, the algorithm makes a greedy choice (by including the largest coin) which looks best to come up with an optimal solution (a change with fewest #coins).

• This is an example of Greedy Algorithm.
Coin Changing

• Is Greedy Algorithm always working?
• No!
• Consider a new set of coin denominations:
 $1, $4, $5, $10

• Suppose we want a change of $8
• Greedy algorithm: 4 coins (5,1,1,1)
• Optimal solution: 2 coins (4,4)
Greedy Algorithm

• We will look at some **non-trivial** examples where greedy algorithm works correctly

• Usually, to show a greedy algorithm works:
 • We show that **some** optimal solution includes the greedy choice
 ➔ selecting greedy choice is correct
 • We show optimal substructure property
 ➔ solve the subproblem recursively
Activity Selection

• Suppose you are a freshman in a school, and there are many welcoming activities

• There are \(n \) activities \(A_1, A_2, ..., A_n \)

• For each activity \(A_k \), it has
 • a start time \(s_k \), and
 • a finish time \(f_k \)

Target: Join as many as possible!
Activity Selection

• To join the activity A_k,
 • you must join at s_k;
 • you must also stay until f_k

• Since we want as many activities as possible, should we choose the one with
 (1) Shortest duration time?
 (2) Earliest start time?
 (3) Earliest finish time?
Activity Selection

• Shortest duration time may not be good:
 \(A_1 : [4:50, 5:10) \),
 \(A_2 : [3:00, 5:00) \), \(A_3 : [5:05, 7:00) \),

• Though not optimal, #activities in this solution \(R \) (shortest duration first) is at least half #activities in an optimal solution \(O \):
 • One activity in \(R \) clashes with at most 2 in \(O \)
 • If \(|O| > 2|R| \), \(R \) should have one more activity
Activity Selection

• Earliest start time may even be worse:
 \(A_1 : [3:00, 10:00), \)
 \(A_2 : [3:10, 3:20), A_3 : [3:20, 3:30), \)
 \(A_4 : [3:30, 3:40), A_5 : [3:40, 3:50) \ldots \)

• In the worst-case, the solution contains 1 activity, while optimal has \(n-1 \) activities
To our surprise, earliest finish time works!

We actually have the following lemma:

Lemma: For the activity selection problem, some optimal solution includes an activity with earliest finish time

How to prove?
Proof: (By “Cut-and-Paste” argument)
• Let \(OPT\) = an optimal solution
• Let \(A_j\) = activity with earliest finish time
• If \(OPT\) contains \(A_j\), done!
• Else, let \(A'\) = earliest activity in \(OPT\)
 • Since \(A_j\) finishes no later than \(A'\), we can replace \(A'\) by \(A_j\) in \(OPT\) without conflicting other activities in \(OPT\)

\(\Rightarrow\) an optimal solution containing \(A_j\)
(since it has same #activities as \(OPT\))
Optimal Substructure

Let A_j = activity with earliest finish time

Let S = the subset of original activities that do not conflict with A_j

Let OPT = optimal solution contain A_j

Lemma:

$OPT - \{ A_j \}$ must be an optimal solution for the subproblem with input activities S
Proof: (By contradiction)

- First, \(\text{OPT} - \{ A_j \} \) can contain only activities in \(S \)
- If it is not an optimal solution for input activities in \(S \), let \(C \) be some optimal solution for input \(S \)
 \(\implies C \) has more activities than \(\text{OPT} - \{ A_j \} \)
 \(\implies C \cup \{ A_j \} \) has more activities than \(\text{OPT} \)
 \(\implies \text{Contradiction occurs} \)
Greedy Algorithm

The previous two lemmas implies the following correct greedy algorithm:

\[S = \text{input set of activities}; \]

while (\(S \) is not empty) {
 \(A = \text{activity in} \ S \text{ with earliest finish time}; \)
 Update \(S \) by removing activities having conflicts with \(A; \)
}

If finish times are sorted in input, running time = \(O(n) \)
0-1 Knapsack Problem

- Suppose you are a thief, and you are now in a jewelry shop (nobody is around!)
- You have a big knapsack that you have “borrowed” from some shop before
- Weight limit of knapsack: W
- There are n items, I_1, I_2, \ldots, I_n
- I_k has value v_k, weight w_k

Target: Get items with total value as large as possible without exceeding weight limit.
0-1 Knapsack Problem

• We may think of some strategies like:
 (1) Take the most valuable item first
 (2) Take the densest item (with v_k/w_k is maximized) first

• Unfortunately, someone shows that this problem is very hard (NP-complete), so that it is unlikely to have a good strategy

• Let’s change the problem a bit...
Fractional Knapsack Problem

- In the previous problem, for each item, we either take it all, or leave it there
 - Cannot take a fraction of an item

- Suppose we can allow taking fractions of the items; precisely, for a fraction c
 - c part of I_k has value cv_k, weight cw_k

Target: Get as valuable a load as possible, without exceeding weight limit
Fractional Knapsack Problem

• Suddenly, the following strategy works:
 Take as much of the densest item (with v_k/w_k is maximized) as possible

• The correctness of the above greedy-choice property can be shown by cut-and-paste argument

• Also, it is easy to see that this problem has optimal substructure property
 implies a correct greedy algorithm
Fractional Knapsack Problem

- However, the previous greedy algorithm (pick densest) does not work for 0-1 knapsack
- To see why, consider $W = 50$ and:
 - $I_1: v_1 = 60, w_1 = 10$ (density: 6)
 - $I_2: v_2 = 100, w_2 = 20$ (density: 5)
 - $I_3: v_3 = 120, w_3 = 30$ (density: 4)
- Greedy algorithm: 160 (I_1, I_2)
- Optimal solution: 220 (I_2, I_3)
Encoding Characters

• In ASCII, each character is encoded using the same number of bits (8 bits)
 • called fixed-length encoding
• However, in real-life English texts, not every character has the same frequency
• One way to encode the texts is:
 • Encode frequent chars with few bits
 • Encode infrequent chars with more bits
 ➔ called variable-length encoding
Encoding Characters

- Variable-length encoding may gain a lot in storage requirement

Example:
- Suppose we have a 100K-char file consisted of only chars \(a, b, c, d, e, f \)
- Suppose we know \(a \) occurs 45K times, and other chars each 11K times

\[\text{Fixed-length encoding: } 300K \text{ bits} \]
Encoding Characters

Example (cont):

Suppose we encode the chars as follows:

- \(a \mapsto 0 \), \(b \mapsto 100 \), \(c \mapsto 101 \),
- \(d \mapsto 110 \), \(e \mapsto 1110 \), \(f \mapsto 1111 \)

- Storage with the above encoding:
 \[(45 \times 1 + 33 \times 3 + 22 \times 4) \times 1K \]
 \[= 232K \text{ bits (reduced by 25\%!!)} \]
Encoding Characters

Thinking a step ahead, you may consider an even “better” encoding scheme:

\[a \rightarrow 0, \quad b \rightarrow 1, \quad c \rightarrow 00, \quad d \rightarrow 01, \quad e \rightarrow 10, \quad f \rightarrow 11 \]

- This encoding requires less storage since each char is encoded in fewer bits ...

- What’s wrong with this encoding?
Prefix Code

Suppose the encoded texts is: 0101
We cannot tell if the original text is
abab, dd, abd, aeb, or ...

• The problem comes from:
 one codeword is a prefix of another one
Prefix Code

- To avoid the problem, we generally want each codeword not a prefix of another
 - called **prefix code**, or **prefix-free code**
- Let $T =$ text encoded by prefix code
- We can easily decode T back to original:
 - **Scan** T from the beginning
 - Once we see a codeword, output the corresponding char
 - Then, recursively decode remaining
Prefix Code Tree

• Naturally, a prefix code scheme corresponds to a prefix code tree
 • Each char → a leaf
 • Root-to-leaf path → codeword
• E.g., a → 0, b → 100,
 c → 101, d → 110,
 e → 1110, f → 1111
Optimal Prefix Code

Question: Given frequencies of each char, how to find the optimal prefix code scheme (or optimal prefix code tree)?

Precisely:

Input: $S = \text{a set of } n \text{ chars, } c_1, c_2, \ldots, c_n \text{ with } c_k \text{ occurs } f_{c_k} \text{ times}$

Target: Find codeword w_k for each c_k such that $\sum_k |w_k| f_{c_k}$ is minimized
Huffman Code

In 1952, David Huffman (then an MIT PhD student) thinks of a greedy algorithm to obtain the optimal prefix code tree.

Let c and c' be chars with least frequencies. He observed that:

Lemma: There is some optimal prefix code tree with c and c' sharing the same parent, and the two leaves are farthest from root.
Proof: (By “Cut-and-Paste” argument)

- Let $\text{OPT} = \text{some optimal solution}$
- If c and c' as required, done!
- Else, let a and b be two bottom-most leaves sharing same parent (such leaves must exist... why??)
 - swap a with c, swap b with c'
 - an optimal solution as required

(since it at most the same $\sum_k |w_k| f_k$ as OPT ... why??)
Graphically:

If this is optimal

then this is optimal
Optimal Substructure

Let OPT be an optimal prefix code tree with c and c' as required.

Let T be a tree formed by merging c, c', and their parent into one node.

Consider $S' = \text{set formed by removing } c \text{ and } c' \text{ from } S$, but adding X with $f_X = f_c + f_{c'}$.

Lemma:

T is an optimal prefix code tree for S'.
Graphically, the lemma says:

If this is optimal for S

then this is optimal for S'

Merging c, c' and the parent

Here, $f_X = f_c + f_{c'}$
Huffman Code

Questions:

Based on the previous lemmas, can you obtain Huffman’s coding scheme?
(Try to think about yourself before looking at next page…)

What is the running time?

$O(n \log n)$ time, using heap (how??)
Huffman(S) { // build Huffman code tree

1. Find least frequent chars c and c'
2. S' = remove c and c' from S,
 but add char X with \(f_X = f_c + f_{c'} \)
3. T' = Huffman(S')
4. Make leaf X of T' an internal node by
 connecting two leaves c and c' to it
5. Return resulting tree

}