CS2351
Data Structures

Lecture 17:
Hashing I
About this lecture

• The Hashing Problem
• Hash with Chaining
• Hash with Open Addressing

• Choosing a good Hash Function
 ** Universal Hash Function
The Hashing Problem
Hashing Problem

• Let $U = \{1, 2, \ldots, u\}$ be a universe
 $S = n$ distinct keys chosen from U

• The Hashing Problem:

 To store S such that the following operations can be done efficiently:

 \[
 \begin{align*}
 \text{Search}(x, S) & : \text{Is } x \text{ in } S \,? \\
 \text{Insert}(x, S) & : \text{Insert } x \text{ to } S \\
 \text{Delete}(x) & : \text{Delete } x \text{ from } S
 \end{align*}
 \]
Hashing Problem

• Solution 1: Use a balanced BST
 Operation time: $O(\log n)$
 Space: $O(n)$

• Solution 2: Use an $O(u)$-size array
 Operation time: $O(1)$
 Space: $O(u)$
Hashing Problem

Question:

Can we have a solution that has the benefits of both? That is, with

Operation time: \(O(1) \)

Space: \(O(n) \) words

Answer:

Yes, if we allow operation time to be “average case” instead of “worst case”
Hashing Problem

- To control the space, we use a hash table T of size m (m is often set to $\Theta(n)$).
- Next, we create a hash function h:
 - which maps each integer in U to some integer in $[1, m]$.
 - E.g., $h(x) = x^2 + 3x \mod m$.
- Using the hash function, each key will be mapped to some entry in the table.
Hash Function

U

S

T
Hashing Problem

• In an ideal case, all keys are mapped to distinct entries in T
 ➔ Search is performed in $O(1)$ time!

• In general, an entry may correspond to more than 1 key ➔ Collision occurs

• Two common ways to handle collision
 • Chaining
 • Open Addressing
Remark

• Hashing has many applications
• E.g., Our web browser (IE/Firefox) will automatically keep the accessed web pages in the hard-disk

Then if we try to visit a web page that is accessed before, it becomes faster

How can our browser know if a web page was accessed before?
Hash with Chaining
Chaining

- Chaining stores all the keys mapped to the same entry by a linked list.
Chaining

• Insertion can be done in $O(1)$ time (why?)
• How about search or delete?
Performance of Chaining

• Recall that the hash table T has m entries, and there are n keys
• We define load factor $\alpha = n/m$
 • average # keys per entry
• The worst case of search or delete is $O(n)$ time (if all keys are in the same entry)

• How about the average case?
Performance of Chaining

- To analyze the average case, we use the **simple uniform hashing assumption**:
 1. Each element of U is equally likely to be mapped into any of the m entries
 2. Also, it is independent of where any other element is mapped to

- Next, we analyze search and delete
Unsuccessful Search

• Suppose we search for x which is not in S
• Then, we will compute $h(x)$, access the entry $h(x)$ in the table, and traverse all the keys mapped to that entry
 ➔ Search time
 \[= \Theta(1) + \Theta(\# \text{ of keys traversed})\]

• Let n_r be the number of keys in entry r
 ➔ $n = n_1 + n_2 + \ldots + n_m$
Unsuccessful Search

Theorem:
The expected time for an unsuccessful search is \(\Theta(1 + \alpha) \)

Proof:
The value \(h(x) \) has equal chance to be any number in \([1,m]\) (why?)

\[\Rightarrow \text{Expected search time} \]
\[= \Theta(1) + \Theta\left(\frac{n_1 + n_2 + \ldots + n_m}{m}\right) = \Theta(1 + \alpha) \]
Successful Search

• Suppose we search for \(x \) which is in \(S \)
• Then, we will compute \(h(x) \), access the entry \(h(x) \), and traverse the keys mapped to that entry as soon as \(x \) is found

\[\text{Search time} = \Theta(1) + \Theta(\text{# of keys traversed}) \]

• Let \(n_r \) be the number of keys in entry \(r \)

\[n = n_1 + n_2 + \ldots + n_m \]
Theorem: Assuming that each key in S has equal chance to be searched
The expected time for a successful search is $\Theta(1+\alpha)$

- Though it has the same expected time as an unsuccessful search, the analysis is very different
- It is because each entry of the table is not equally likely to be searched
Successful Search

Proof:

We first ignore the $\Theta(1)$ time to compute $h(x)$ and access the entry

Expected Search Time

$= E[(1/n)(1 + 2 + \ldots + n_1 + 1 + 2 + \ldots + n_2 + \ldots + 1 + 2 + \ldots + n_m)]
= (m/n) E[n_1 (n_1 + 1)/2]$ (by symmetry)

$= (m/(2n)) E[n_1^2] + (1/2)$
Successful Search

Proof (cont):

It remains to compute \(E[n_1^2] \).

Recall that the value \(n_1 \) counts how many of the \(n \) keys are mapped to entry 1.

\[n_1 = Y_1 + Y_2 + \ldots + Y_n \]

where \(Y_j = 1 \) if key \(j \) is in entry 1, and \(Y_j = 0 \) otherwise.
Successful Search

Proof (cont):

\[E[n_1^2] = E[(Y_1 + Y_2 + \ldots + Y_n)^2] \]
\[= E[Y_1^2 + Y_2^2 + \ldots + Y_n^2 + \]
\[Y_1Y_2 + Y_1Y_3 + \ldots + Y_1Y_n + \]
\[\ldots + \]
\[Y_nY_1 + Y_nY_2 + \ldots + Y_nY_{n-1}] \]
\[= n E[Y_1^2] + n(n-1) E[Y_1Y_2] \]
\[= n/m + n(n-1)/m^2 \]
Successful Search

Proof (cont):

Combining everything, and adding back the $\Theta(1)$ time to compute $h(x)$ and access entry, we have:

Expected Search Time

$$= \Theta(1) + \left(\frac{m}{2n}\right) E\left[n_1^2 \right] + (1/2)$$

$$= \Theta(1) + \left(\frac{m}{2n}\right) \left(\frac{n}{m} + \frac{n(n-1)}{m^2}\right) + (1/2)$$

$$= \Theta(1) + 1 + \frac{(n-1)}{(2m)} = \Theta(1+\alpha)$$
Remark 1

- In both cases, search time is $\Theta(1+\alpha)$
- Deletion is done by search and delete
 - expected time is $\Theta(1+\alpha)$
- If m is set to $\Theta(n)$
 - Space of hash table $T = \Theta(n)$
 - Expected time for each operation = $\Theta(1)$
Remark 2

• Our analysis for successful search time is different from that in the textbook
 • Though the value obtained is exactly the same
 • See the textbook for a reference

• In fact, we can use the same analysis technique to obtain the average running time for bucket sort (See Notes 5)
Hash with Open Addressing
Open Addressing

• In open addressing, each entry of the hash table contains at most 1 key
 ➔ load factor is at most 1

• When inserting a key k, we use k to compute a sequence of entries to check, until we get an empty entry to store k

• The hash function h now contains two parameters: (1) the key, and (2) the sequence number
Open Addressing

• The insertion procedure is as follows:

1. \(j = 0 \);
2. while entry \(h(k, j) \) is not empty
 increase \(j \) by 1;
3. Insert key \(k \) at the entry \(h(k, j) \)

• We often require \(h(k, 0), h(k, 1), \ldots \) to be a permutation of 1, 2, ..., \(m \)

\(\Rightarrow \) Allows all entries of \(T \) to be used
Open Addressing

• We assume that no delete is allowed
• In that case, search can be done in the same way as we insert
 • To search for x, we repeatedly try the entries $h(k, j)$, for $j = 0, 1, 2, ...$
 • We stop when we have found x or when we hit an empty entry

• What is the average insert/search time?
Lemma: Let X be a random variable that takes on non-negative integral values. Then,

$$E[X] = \sum_{i=1,2,...} \Pr(X \geq i)$$

Proof:

$$\sum_{i=1,2,...} \Pr(X \geq i) = \sum_{i=1,2,...} \sum_{j=i,i+1,...} \Pr(X = j)$$

$$= \sum_{j=1,2,...} \sum_{i=1,2,...,j} \Pr(X = j)$$

$$= \sum_{j=1,2,...} j \Pr(X = j) = E[X]$$
A Useful Formula (2nd proof)

$$\sum_{i=1,2,...} \Pr(X \geq i)$$

sums up

Pr(X \geq 3)

Pr(X \geq 2)

Pr(X \geq 1)

Pr(X=1) \quad 3*Pr(X=3)

2*Pr(X=2) \quad 4*Pr(X=4)

\ldots\ldots

\sum_{i=1,2,...} \Pr(X \geq i)

\E[X]

sумирует
Performance of Open Addressing

• To analyze the average case, we use the uniform hashing assumption:

1. The function $h(k, j)$ produces a random permutation of 1, 2, ..., m

2. Also, each permutation is equally likely to be produced

• Consequently, $h(k,0)$ has $1/m$ chance to be in any entry. Then $h(k,1)$ has $1/(m-1)$ chance to be in any other entry apart from $h(k,0)$, and so on ...
Unsuccessful Search

Theorem:

The expected time for an unsuccessful search is \(O(1/(1-\alpha)) \), where \(\alpha = n/m \)

Proof: Let \(X \) = \# entries examined

\[
\begin{align*}
Pr(X \geq 1) &= 1, \quad Pr(X \geq 2) = n/m = \alpha \\
Pr(X \geq 3) &= n/m \times (n-1)/(m-1) \leq \alpha^2 \\
Pr(X \geq i) &= n/m \times \ldots \times (n-i+2)/(m-i+2) \leq \alpha^{i-1} \\
\Rightarrow E[X] &= \sum Pr(X \geq i) \leq 1 + \alpha + \alpha^2 + \ldots = 1/(1-\alpha)
\end{align*}
\]
Insertion

Theorem:
Assume we never insert a key twice in S.
The expected time for an insertion is $O(1/(1-\alpha))$, where $\alpha = n/m$

Proof:
Insertion requires an unsuccessful search followed by placing the key to the first empty entry
\Rightarrow Same time as unsuccessful search
Successful Search

Theorem:
Assuming that each key in S has equal chance to be searched
The expected time for a successful search is $O\left(\frac{1}{\alpha} \log \left\{ \frac{1}{1-\alpha} \right\} \right)$

Proof:
Expected time to search the $(j+1)^{th}$ inserted key = $\frac{1}{1-j/m} = \frac{m}{m-j}$ (why?)
Successful Search

Proof (cont.):

Expected Search Time

\[= \frac{1}{n} \times \left(\frac{m}{m} + \frac{m}{m-1} + \ldots + \frac{m}{m-n+1} \right) \]

\[= \frac{m}{n} \times \left(\frac{1}{m} + \frac{1}{m-1} + \ldots + \frac{1}{m-n+1} \right) \]

\[= \frac{m}{n} \times O\left(\log m - \log (m-n) \right) \text{ [harmonic sum]} \]

\[= \frac{m}{n} \times O\left(\log \left\{ \frac{1}{1 - \frac{n}{m}} \right\} \right) \]

\[= \frac{1}{\alpha} \times O\left(\log \left\{ \frac{1}{1-\alpha} \right\} \right) \]