CS2351
Data Structures

Lecture 15:
B-tree
About this tutorial

• Introduce **External Memory (EM) Model**
 • Proposed by Aggarwal and Vitter (1988)

• How to perform searching and updating efficiently when data is on the hard disk?
 • B-tree, B⁺-tree, B*-tree
The EM Model
Dealing with Massive Data

• In some applications, we need to handle a lot of data
 • so much that our RAM is not large enough to handle
• Ex 1: Sorting most recent 8G Google search requests
• Ex 2: Finding longest common patterns in Human and Mouse DNAs
Dealing with Massive Data

• Since RAM is not large enough, we need the hard-disk to help the computation

• Hard-disk is useful:
 1. can store input data (obvious)
 2. can store intermediate result

• However, there are new concern, because accessing data in the hard-disk is much slower than accessing data in RAM
EM Model [Aggarwal-Vitter, 88]

- Computer is divided into three parts: CPU, RAM, Hard-disk
- CPU can work with data in RAM directly
 - But not directly with data in hard-disk
- RAM can read data from hard-disk, or write data to hard-disk, using the I/O (input/output) operations
EM Model [Aggarwal-Vitter, 88]

- Size of RAM = M items
- Hard-disk is divided in pages
 - Size of a disk page = B items
- In one I/O, we can
 - read or write one page
- Complexity of an algorithm = number of I/Os used

⇒ That means, CPU processing is free!
Test Our Understanding

• Suppose we have a set of N numbers, stored contiguously in the hard-disk

• How many I/Os to find max of the set?
 \textbf{Ans.} $O\left(\frac{N}{B} \right)$ I/Os

• Is this optimal?
 \textbf{Ans.} Yes. We must read all #s to find max, which needs at least $\frac{N}{B}$ I/Os
B-tree
Search Tree in EM Model

- **BST** search needs $O(\log n)$ comparisons
 - This is optimal (why?)
 - Key idea of BST: each comparison reduces the search space by nearly half

- In EM model, each page contains B items
 - We can compare more things in 1 I/O
 - Can we take advantage of this to minimize search I/Os?
Search Tree in EM Model

• Yes! Let us use a degree-\(B \) tree

Each node has \(B \) children

- Keys less than 15
- Keys between 15 and 32
- Keys between 32 and 45
- Keys between 45 and 67
- Keys more than 67
Search Tree in EM Model

• Search can be done in $O(\log_B n)$ I/Os
B-tree

• We now introduce B-tree which uses the above concept to support fast searching
 • But in order to support fast updating, the definition is slightly modified
 • Precisely, B-tree is a search tree, where
 1. Root has 2 to B children; each other internal node has $B/2$ to B children
 2. All leaves are on the same level

 Flexibility in node degree allows fast updating
B-tree

• Based on the definition of B-tree
 • What is the height of the tree?
 • How many I/Os to search?
 • Is it optimal? Why?

• Next, we describe how to perform fast updates, which is done by two powerful operations: merge and split
Updates in a B-tree
Insertion

- Insertion of a key k first inserts k to the leaf L that should contain it
Insertion: Case 1

- If the leaf L still has at most B keys
 \rightarrow Done!
Insertion : Case 2

• If the leaf L now has $B+1$ keys (overflow)
 → Split L into two nodes
 → Insert middle key k' to parent of L

![Diagram of Insertion Case 2](image-url)
Insertion: Case 2

- If L’s parent now has at most B children
 - Done

- Else if L’s parent now overflows
 - Recursively split and insert middle key to its parent

- Special case: If the current root is split into two nodes, we create a new root and joins it to the two nodes
In both cases:

- The number of I/Os is $O(\log_B n)$
- The number of operations is $O(B \log_B n)$
- All properties of B-tree are maintained after insertion

Remarks:

- Tree height is increased only when the root is split
Deletion

- Deletion of a key k is done as follows:
 1. If k is in some leaf L, delete k;
 2. Else, k is in some node X.
 -> We locate k's successor s which must be in some leaf L; (why?)
 -> Replace k by s in the node X, and delete s from the leaf L
 - So we can assume that we always delete a key from some leaf L
Deletion: Case 1

- If the leaf L still has at least $B/2$ keys → Done!
Deletion : Case 2

• If leaf L now has $B/2 - 1$ keys (underflow) → Merge L with a sibling L'

• Now, two sub-cases may happen:
 Case 2.1 : overflow occurs
 • Split the merged node, and update the key in the parent → Done!

Case 2.2 : no overflow
 • Delete a key from L’s parents
 • Recursively update by merge and split
Deletion : Case 2

L’s parent

Merge L and L’

Merged node

parent now has one less key

Case 2.1 : overflows

Case 2.2 : no overflow

Split merged node ➔ each has $B/2$ to B keys

update key in parent

Recursively delete key in parent
Deletion Performance

In both cases:

• The number of I/Os is $O(\log_B n)$
• The number of operations is $O(B \log_B n)$
• All properties of B-tree are maintained after insertion

Remarks: The root is deleted when it has only one child \Rightarrow this child becomes new root \Rightarrow Tree height decreased by 1
Final Remarks

• When \(B = O(1) \), each operation is done in \(O(\log n) \) time (We need \(B \geq 3 \). Why?)
• When \(B = 3 \), the corresponding \(B \)-tree is called a 2-3 tree
• When \(B = 4 \), it is called a 2-3-4 tree, which is equivalent to a Red-Black tree

• \(B \)-tree has two famous variants, \(B^+ \)-tree and \(B^* \)-tree (check wiki for more info)