About this lecture

• A graph consists of a set of nodes and a set of edges joining the nodes
 • A tree is a special kind of graph, where there is one connected component, and that it contains no cycles

• In this lecture, we introduce how to store a tree, and how to store a graph
Tree
Classification of Trees

rooted

Each edge connects a parent to a child

unrooted

No parent-child relationship in an edge
Classification of Rooted Trees

ordered
Has ordering among children

unordered
No ordering among children

? =
Classification of Rooted Trees

- **binary**
 - Each node has at most 2 children

- **non-binary**
 - No restrictions
Implementing an Ordered Rooted Binary Tree

• Each node contains pointers that point to the left child and the right child:

```c
struct node {
    ...
    struct node *left, *right;
};
```
Implementing an Ordered Rooted Binary Tree

• Also, each node may contain some info
• Ex: In a search tree for a set of integers, each node contains an integer key

```c
struct node {
    int key;
    struct node *left, *right;
} ;
```
Implementing an Ordered Rooted Binary Tree

- Once the definition of a node is done, we can create a tree

```c
struct node root, x, y;
root.left = &x;
root.right = &y;
x.left = x.right = y.left = y.right = NULL;
```
Remarks

• It is easy to modify the definition of a node to implement a rooted non-binary tree (how?)

• Sometimes, we may also want to store a pointer from a node to its parent, so as to speed up movement in a tree

```
struct node {
    int key;
    struct node *left, *right, *parent;
} ;
```
Graph
Graph

undirected

directed
Adjacency List (1)

- For each vertex \(u \), store its neighbors in a linked list.
Adjacency List (2)

- For each vertex u, store its neighbors in a linked list
Adjacency List (3)

• Let $G = (V, E)$ be an input graph
• Using Adjacency List representation:
 • Space: $O(|V| + |E|)$
 - Excellent when $|E|$ is small
 • Easy to list all neighbors of a vertex
 • Takes $O(|V|)$ time to check if a vertex u is a neighbor of a vertex v
• can also represent weighted graph
Adjacency Matrix (1)

- Use a $|V| \times |V|$ matrix A such that

 $A(u,v) = 1$ if (u,v) is an edge
 $A(u,v) = 0$ otherwise

\[
\begin{pmatrix}
 0 & 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1 & 1 \\
 0 & 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 & 0
\end{pmatrix}
\]
Adjacency Matrix (2)

- Use a $|V| \times |V|$ matrix A such that

 $A(u,v) = 1$ if (u,v) is an edge
 $A(u,v) = 0$ otherwise

\[
\begin{array}{c|c|c|c|c|c}
1 & 2 & 3 & 4 & 5 \\
\hline
1 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]
Adjacency Matrix (3)

- Let $G = (V, E)$ be an input graph
- Using Adjacency Matrix representation:
 - Space: $O(|V|^2)$
 - \Rightarrow Bad when $|E|$ is small
 - $O(1)$ time to check if a vertex u is a neighbor of a vertex v
 - $\Theta(|V|)$ time to list all neighbors
- can also represent weighted graph