CS2351
Data Structures

Lecture 5: Sorting in Linear Time
About this lecture

• Sorting algorithms we studied so far
 - Insertion, Selection, Merge, Quicksort
 ➔ determine sorted order by comparison

• We will look at 3 new sorting algorithms
 - Counting Sort, Radix Sort, Bucket Sort
 ➔ assume some properties on the input, and
determine the sorted order by distribution
Helping the Billionaire

• Your boss, Bill, is a billionaire.
• Inside his BIG wallet, there are a lot of bills, say, \(n \) bills.
• Nine kinds of bills:
 \($1, $5, $10, $20, $50, $100, $200, $500, $1000 \)
Helping the Billionaire

• He did not care about the ordering of the bills before
• But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only $500 notes today ... Do I have enough in the wallet?
A Proposal

- Create a bin for each kind of bill
- Look at his bill one by one, and place the bill in the corresponding bin
- Finally, collect bills in each bin, starting from $1-bin, $5-bin, ..., to $1000-bin
A Proposal

• In the previous algorithm, there is no comparison between the items ...
 • But we can still sort correctly... WHY?

• Each step looks at the value of an item, and distribute the item to the correct bin
 • So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before \(\rightarrow \) sorted
Sorting by Distribution

• Previous algorithm sorts the bills based on **distribution** operations

• It works because:
 • we have information about the values of the input items ➔ we can create bins

• We will look at more algorithms which are based on the same **distribution** idea
Counting Sort
Counting Sort

- **Input:** Array $A[1..n]$ of n integers, each has value from $[0,k]$
- **Output:** Sorted array of the n integers
- **Idea 1:** Create $B[1..n]$ to store the output
- **Idea 2:** Process $A[1..n]$ from right to left
 - Use $k + 2$ counters:
 - One for “which element to process”
 - $k + 1$ for “where to place”
Counting Sort (Details)

Before Running

A

2 1 2 5 3 3 1 2

k+1 counters

c[0], c[1], c[2], c[3], c[4], c[5]

next element

B

Counting Sort (Details)

Step 1: Set $c[j]$ = location in B for placing the next element if it has value j

A

| 2 | 1 | 2 | 5 | 3 | 3 | 1 | 2 |

B

$c[0] = 0$

$c[1] = 2$

$c[2] = 5$

$c[3] = 7$

$c[4] = 7$

$c[5] = 8$
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter.

\[A = 2 \quad 1 \quad 2 \quad 5 \quad 3 \quad 3 \quad 1 \quad 2 \]

\[B = \text{next element} \]

Step 2: Process next element of A and update corresponding counter

A

$2 \ 1 \ 2 \ 5 \ 3 \ 3 \ 1 \ 2$

next element

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

c[2] = 4
c[5] = 8

B

1 2 3

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[2 \quad 1 \quad 2 \quad 5 \quad 3 \quad 3 \quad 1 \quad 2\]

next element

\[c[2] = 4 \quad c[5] = 8\]

B

\[1 \quad 2 \quad 3 \quad 3\]

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

B
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[
\begin{array}{ccccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

next element

\[
\begin{array}{ccccccccc}
\end{array}
\]

B

\[
\begin{array}{ccccccccc}
1 & 2 & 2 & 3 & 3 & 5 \\
\end{array}
\]
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

c[0] = 0
c[1] = 0
c[2] = 3
c[3] = 5
c[4] = 0
c[5] = 7

B

1 1 2 2 3 3 5

18
Counting Sort (Details)

Step 2: Done when all elements of A are processed

A

next element

\[
\begin{array}{cccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

\[
c[2] = 3 \\
c[5] = 7 \\
\]

B

\[
\begin{array}{ccccccc}
1 & 1 & 2 & 2 & 2 & 3 & 3 & 5 \\
\end{array}
\]

\[
c[0] = 0 \\
c[1] = 0 \\
c[2] = 3 \\
c[3] = 5 \\
c[4] = 7 \\
\]
Counting Sort (Step 1)

How can we perform Step 1 smartly?

1. Initialize $c[0], c[1], ..., c[k]$ to 0

2. /* First, set $c[j] = \# \text{ elements with value } j */$

 For $x = 1, 2, ..., n$, increase $c[A[x]]$ by 1

3. /* Set $c[j] = \text{ location in } B \text{ to place next element whose value is } j \text{ (iteratively)} */$

 For $y = 1, 2, ..., k$, $c[y] = c[y-1] + c[y]$

Time for Step 1 = $O(n + k)$
Counting Sort (Step 2)

How can we perform Step 2?

/* Process A from right to left */

For $x = n, n-1, \ldots, 2, 1$

{ /* Process next element */

 /* Update counter */
 Decrease $c[A[x]]$ by 1;

}

Time for Step 2 = $O(n)$
Counting Sort (Running Time)

Conclusion:

• Running time = $O(n + k)$
 \[\Rightarrow \] if $k = O(n)$, time is (asymptotically) optimal

• Counting sort is also stable:
 • elements with same value appear in same order in before and after sorting
Stable Sort

Before Sorting

After Sorting
Radix Sort
Radix Sort

• Input: Array $A[1..n]$ of n integers, each has d digits, and each digit has value from $[0,k]$

• Output: Sorted array of the n integers

• Idea: Sort in d rounds
 • At Round j, stable sort A on digit j (where rightmost digit = digit 1)
Radix Sort (Example Run)

<table>
<thead>
<tr>
<th>Before Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 0 4</td>
</tr>
<tr>
<td>2 5 7 9</td>
</tr>
<tr>
<td>1 8 7 4</td>
</tr>
<tr>
<td>6 3 5 5</td>
</tr>
<tr>
<td>4 4 3 2</td>
</tr>
<tr>
<td>8 3 1 8</td>
</tr>
<tr>
<td>1 3 0 4</td>
</tr>
</tbody>
</table>

4 digits
Radix Sort (Example Run)

Round 1: Stable sort digit 1

1904 4432
2579 1904
1874 1874
6355 1304
4432 6355
8318 8318
1304 2579
Radix Sort (Example Run)

Round 2: Stable sort digit 2

After Round 2, last 2 digits are sorted (why?)
Radix Sort (Example Run)

Round 3: Stable sort digit 3

1904 1304
1304 8318
8318 6355
4432 4432
6355 2579
1874 1874
2579 1904

After Round 3, last 3 digits are sorted (why?)
Radix Sort (Example Run)

Round 4: Stable sort digit 4

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

After Round 4, last 4 digits are sorted (why?)
Radix Sort (Example Run)

Done when all digits are processed

1 3 0 4
1 8 7 4
1 9 0 4
2 5 7 9
4 4 3 2
6 3 5 5
8 3 1 8

The array is sorted (why?)
Radix Sort (Correctness)

Question:
“After \(r \) rounds, last \(r \) digits are sorted”
Why ?

Answer:
This can be proved by induction:
The statement is true for \(r = 1 \)
Assume the statement is true for \(r = k \)
Then ...
Radix Sort (Correctness)

At Round $k+1$,

- if two numbers differ in digit “$k+1$”, their relative order [based on last $k+1$ digits] will be correct after sorting digit “$k+1$”
- if two numbers match in digit “$k+1$”, their relative order [based on last $k+1$ digits] will be correct after stable sorting digit “$k+1$” (why?)

\Rightarrow Last “$k+1$” digits sorted after Round “$k+1$”
Radix Sort (Summary)

Conclusion:

- After d rounds, last d digits are sorted, so that the numbers in $A[1..n]$ are sorted.
- There are d rounds of stable sort, each can be done in $O(n + k)$ time.

\Rightarrow Running time $= O(d(n + k))$

- If $d=O(1)$ and $k=O(n)$, asymptotically optimal.
Bucket Sort
Bucket Sort

- **Input:** Array \(A[1..n] \) of \(n \) elements, each is drawn uniformly at random from the interval \([0,1)\)

- **Output:** Sorted array of the \(n \) elements

- **Idea:**

 Distribute elements into \(n \) buckets, so that each bucket is likely to have fewer elements \(\rightarrow \) easier to sort
Bucket Sort (Details)

Before Running

0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68

Step 1: Create n buckets

$n = \#\text{buckets} = \#\text{elements}$

$[0.0,0.1) \quad [0.1,0.2) \quad [0.2,0.3) \quad [0.3,0.4) \quad [0.4,0.5) \quad [0.5,0.6) \quad [0.6,0.7) \quad [0.7,0.8) \quad [0.8,0.9) \quad [0.9,1)$

each bucket represents a subinterval of size $1/n$
Bucket Sort (Details)

Step 2: Distribute each element to correct bucket

If Bucket \(j \) represents subinterval \([j/n, (j+1)/n)\), element with value \(x \) should be in Bucket \([xn]\)
Bucket Sort (Details)

Step 3: Sort each bucket (by insertion sort)

- [0,0.1): 0.12, 0.17
- [0.1,0.2): 0.21, 0.23, 0.26
- [0.2,0.3): 0.39
- [0.3,0.4): 0.68
- [0.4,0.5): 0.72, 0.78
- [0.5,0.6): 0.94
Step 4: Collect elements from Bucket 0 to Bucket n-1

Sorted Output: 0.12, 0.17, 0.21, 0.23, 0.26, 0.39, 0.68, 0.72, 0.78, 0.94
Bucket Sort (Running Time)

- Let $X = \# \text{ comparisons in all insertion sort}$

 Running time = $\Theta(n + X)$

 \Rightarrow worst-case running time = $\Theta(n^2)$

- How about average running time?

 Finding average of X (i.e. $\#\text{comparisons}$) gives average running time
Average Running Time

Let $n_j = \# \text{ elements in Bucket } j$

$$X \leq c(n_0^2 + n_1^2 + \ldots + n_{n-1}^2)$$

So, \[E[X] \leq E[c(n_0^2 + n_1^2 + \ldots + n_{n-1}^2)]\]

= \[c \, E[n_0^2 + n_1^2 + \ldots + n_{n-1}^2]\]

= \[c \, (E[n_0^2] + E[n_1^2] + \ldots + E[n_{n-1}^2])\]

= \[cn \, E[n_0^2]\] (by symmetry)
Average Running Time

Textbook (new one: p. 202—203, old one: p. 175—176) shows that

\[E[n_0^2] = 2 - \frac{1}{n} \]

\[\Rightarrow E[X] \leq cn E[n_0^2] = 2cn - c \]

In other words, \(E[X] = O(n) \)

\[\Rightarrow \text{Average running time} = \Theta(n) \]
For Interested Classmates

The following is how we can show

\[E[n_0^2] = 2 - \frac{1}{n} \]

Recall that \(n_0 = \# \text{ elements in Bucket 0} \)

So, suppose we set

\[Y_k = 1 \text{ if element } k \text{ is in Bucket 0} \]
\[Y_k = 0 \text{ if element } k \text{ not in Bucket 0} \]

Then, \(n_0 = Y_1 + Y_2 + \ldots + Y_n \)
For Interested Classmates

Then,

\[
E[n_0^2] = E[(Y_1 + Y_2 + \ldots + Y_n)^2]
= E[Y_1^2 + Y_2^2 + \ldots + Y_n^2]
+ Y_1 Y_2 + Y_1 Y_3 + \ldots + Y_1 Y_n
+ Y_2 Y_1 + Y_2 Y_3 + \ldots + Y_2 Y_n
+ \ldots
+ Y_n Y_1 + Y_n Y_2 + \ldots + Y_n Y_{n-1}
\]
\[\begin{align*}
= \mathbb{E}[Y_1^2] + \mathbb{E}[Y_2^2] + \ldots + \mathbb{E}[Y_n^2] \\
+ \mathbb{E}[Y_1Y_2] + \ldots + \mathbb{E}[Y_nY_{n-1}] \\
= n \mathbb{E}[Y_1^2] + n(n-1) \mathbb{E}[Y_1Y_2] \\
\text{(by symmetry)}
\end{align*} \]

The value of Y_1^2 is either 1 (when $Y_1 = 1$), or 0 (when $Y_1 = 0$)

The first case happens with $1/n$ chance (when element 1 is in Bucket 0), so

\[\mathbb{E}[Y_1^2] = \frac{1}{n} \times 1 + (1- \frac{1}{n}) \times 0 = \frac{1}{n} \]
For Y_1Y_2, it is either 1 (when $Y_1=1$ and $Y_2=1$), or 0 (otherwise)

The first case happens with $1/n^2$ chance (when both element 1 and element 2 are in Bucket 0), so

$$E[Y_1Y_2] = \frac{1}{n^2} \times 1 + (1 - \frac{1}{n^2}) \times 0 = \frac{1}{n^2}$$

Thus, $E[n_0^2] = nE[Y_1^2] + n(n-1)E[Y_1Y_2]$
$$= n\left(\frac{1}{n}\right) + n(n-1)\left(\frac{1}{n^2}\right)$$
$$= 2 - \frac{1}{n}$$