CS2351
Data Structures

Lecture 12:
Graph and Tree Traversals III
About this lecture

• We introduce the Topological Sort problem on directed acyclic graph (DAG)

• We give two linear-time algorithms:
 (1) Using Queue
 (2) Using Stack
Topological Sort

- Directed graph can be used to indicate precedence among a set of events
- E.g., a possible precedence is dressing

Diagram:
- under-shorts
- pants
- belt
- shirt
- tie
- shoes
- socks
- watch
- jacket
Topological Sort

• The previous directed graph is also called a precedence graph

Question: Given a precedence graph \(G \), can we order the events such that if \((u,v)\) is in \(G \) (i.e. \(u \) should complete before \(v \)) then \(u \) appears before \(v \) in the ordering?

We call this problem topological sorting of \(G \)
Topological Sort

Fact: If G contains a cycle, then it is impossible to find a desired ordering (Prove by contradiction)

• However, if G is acyclic (contains no cycles) we shall give two algorithms that always find the desired ordering
Topological Sort (with Queue)

Topological-Sort(G) // given G is acyclic
{
 while (G contains a vertex)
 {
 1. Pick a vertex v with in-degree = 0;
 2. Remove all its outgoing edges;
 3. Output v;
 }
}

Why is the algorithm correct?
Topological Sort (with Queue)

Theorem:
If G is acyclic, the previous algorithm produces a topological sort of G

Proof:
Two cases may happen when we run the previous algorithm.
Case 1: All vertices are output
Case 2: Some vertex may not be output
Proof

• In Case 1, vertices are sorted correctly

• In Case 2, the remaining vertices must each have in-degree ≥ 1. Now, we pick a vertex v in this group, repeatedly visit another vertex by tracing an incoming edge, some vertex will be visited twice (why?) \Rightarrow a cycle is found!!
Performance

• Let $G = (V,E)$ be the input directed graph
• Running time for Topological-Sort:
 1. Each vertex keeps # incoming edges
 2. Finding vertices with in-degree = 0:
 Naïve method: $O(|V|^2)$ total time
 Clever method: (use a queue Q)
 Enqueue vertex once its in-degree = 0
• Total time: $O(|V|+|E|)$
Topological Sort (Example)

When a vertex is output, its indegree is 0.
Topological Sort (with Stack)

Topological-Sort(G) // given G is acyclic
{
 1. Call DFS on G
 2. Output vertices in decreasing order of their finishing times;
}

Why is the algorithm correct?
Theorem:
If G is acyclic, the previous algorithm produces a topological sort of G

Proof: Let (u, v) be an edge. We shall show $f(v) < f(u)$ so that the ordering is correct.
Firstly, during DFS, there are two cases
• Case 1: u is visited before v
• Case 2: v is visited before u
Proof

- In Case 1, u cannot finish before DFS is performed on all its neighbors. Since v is a neighbor of u, we must have
 \[d(u) < d(v) < f(v) < f(u) \]
- In Case 2, v must have finished before u starts (else, there will be a path from v to u and the graph contains a cycle.) Thus,
 \[f(v) < d(u) \implies f(v) < f(u) \]
- Both cases show \(f(v) < f(u) \) \(\implies \) Done!
Topological Sort (Example)

Discovery and Finishing Times after a possible DFS
Ordering Finishing Times (in descending order)

If we order the events from left to right, anything special about the edge directions?
Performance

• Let $G = (V,E)$ be the input directed graph
• Running time for Topological-Sort:
 1. Perform **DFS**: $O(|V|+|E|)$ time
 2. Sort finishing times
 Naïve method: $O(|V| \log |V|)$ time
 Clever method: (use an extra stack S)
 During DFS, push a node into stack S once finished \Rightarrow no need to sort !!
• Total time: $O(|V|+|E|)$