About this lecture

• Given a data structure, amortized analysis studies in a sequence of operations, the average time to perform an operation
• Introduce amortized cost of an operation
• Three Methods for the Same Purpose
 (1) Aggregate Method
 (2) Accounting Method
 (3) Potential Method (see textbook)
Super Stack

• Your friend has created a super stack, which, apart from Push/Pop, supports:

 Super-Pop(k): pop top k items

• Suppose Super-Pop never pops more items than current stack size

• The time for Super-Pop is $O(k)$
• The time for Push/Pop is $O(1)$
Super Stack

• Suppose we start with an empty stack, and we have performed n operations
 • But we don’t know the order

Questions:
• Worst-case time of a Super-Pop?
 Ans. $O(n)$ time [why?]
• Total time of n operations in worst case?
 Ans. $O(n^2)$ time [correct, but not tight]
Super Stack

• Though we don’t know the order of the operations, we still know that:
 • There are at most n Push/Pop
 ➔ Time spent on Push/Pop = $O(n)$
 • # items popped by all Super-Pop cannot exceed total # items ever pushed into stack
 ➔ Time spent on Super-Pop = $O(n)$

So, total time of n operations = $O(n)$!!!
Amortized Cost

• So far, there are no assumptions on n and the order of operations. Thus, we have:

For any n and any sequence of n operations,
worst-case total time = $O(n)$

• We can think of each operation performs in average $O(n) / n = O(1)$ time

⇒ amortized cost = $O(1)$ per operation
(or, each runs in amortized $O(1)$ time)
Amortized Cost

- In general, we can say something like:
 - OP_1 runs in amortized $O(x)$ time
 - OP_2 runs in amortized $O(y)$ time
 - OP_3 runs in amortized $O(z)$ time

Meaning:

For any sequence of operations with $\#OP_1 = n_1$, $\#OP_2 = n_2$, $\#OP_3 = n_3$, worst-case total time = $O(n_1x + n_2y + n_3z)$
Binary Counter

• Let us see another example of implementing a k-bit binary counter

• At the beginning, count is 0, and the counter will be like (assume $k = 5$):

 \[
 \begin{array}{cccccc}
 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]

 which is the binary representation of the count
Binary Counter

• When the counter is incremented, the content will change
• Example: content of counter when:

```
0 0 1 0 1  
```

 count = 5

```
0 0 1 1 0
```

 cost = 2
 count = 6

• The cost of the increment is equal to the number of bits flipped
Binary Counter

Special case:

When all bits in the counter are 1, an increment resets all bits to 0

111111 \rightarrow 000000

\text{count} = \text{MAX} \quad \text{cost} = k \quad \text{count} = 0

- The cost of the corresponding increment is equal to k, the number of bits flipped
Binary Counter

• Suppose we have performed \(n \) increments

Questions:

• Worst-case time of an increment?
 Ans. \(O(k) \) time

• Total time of \(n \) operations in worst case?
 Ans. \(O(nk) \) time [correct, but not tight]
Binary Counter

Let us denote the bits in the counter by $b_0, b_1, b_2, \ldots, b_{k-1}$, starting from the right.

Observation:

b_i is flipped only once in every 2^i increments.

Precisely, b_i is flipped at x^{th} increment $\iff x$ is divisible by 2^i.
Amortized Cost

• So, for \(n \) increments, the total cost is:

\[
\sum_{i=0}^{k} \left\lfloor \frac{n}{2^i} \right\rfloor
\]

\[
\leq \sum_{i=0}^{k} \left(\frac{n}{2^i} \right) < 2n
\]

• By dividing total cost with #increments,

\[\Rightarrow \text{amortized cost of increment} = O(1) \]
Aggregate Method

- The computation of amortized cost of an operation in super stack or binary counter follows similar steps:

 1. Find total cost (thus, an “aggregation”)
 2. Divide total cost by #operations

This method is called Aggregate Method
Accounting Method

- In real life, a bank account allows us to save our excess money, and the money can be used later when needed.
- We also have an easy way to check the savings.
- In amortized analysis, the accounting method is very similar...
Accounting Method

• Each operation pays an amortized cost
 • if amortized cost ≥ actual cost, we save the excess in the bank
 • Else, we use savings to help the payment
• Often, savings can easily be checked from the objects in the current data structure

Lemma: For a sequence of operations, if we have enough to pay for each operation, total actual cost ≤ total amortized cost
Super Stack (Take 2)

• Recall that apart from Push/Pop, a super stack, supports:
 Super-Pop(k): pop top k items in k time

• Let us now assign the amortized cost for each operation as follows:
 Push = $2
 Pop or Super-Pop = $0
Super Stack (Take 2)

Questions:

• Which operation “saves money to the bank” when performed?

• Which operation “needs money from the bank” when performed?

• How to check the savings in the bank?
Super Stack (Take 2)

• Does our bank have enough to pay for each Super-Pop operation?

Ans. When Super-Pop is performed, each popped item donates its corresponding $1 to help the payment

→ Enough $$ to pay for each Super-Pop
Super Stack (Take 2)

Conclusion:
• Amortized cost of Push = 2
• Amortized cost of Pop/Super-Pop = 0

Meaning:
For any sequence of operations with
Push = n_1, # Pop = n_2, # Super-Pop = n_3,
total actual cost \leq 2n_1
Binary Counter (Take 2)

• Let us use accounting method to analyze increment operation in a binary counter, whose initial count = 0

| 0 | 0 | 0 | 0 | 0 |

• We assign amortized cost for each increment = $2

• Recall: actual cost = #bits flipped
Observation: In each increment operation, at most one bit is set from 0 to 1 (whereas the following bits are set from 1 to 0).

E.g.,

<table>
<thead>
<tr>
<th>0 0 1 0 0</th>
<th>0 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>count = 4</td>
<td>count = 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0 0 1 0 1</th>
<th>0 0 1 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>count = 5</td>
<td>count = 6</td>
</tr>
</tbody>
</table>
Binary Counter (Take 2)

Lemma: Savings = # of 1's in the counter

Proof: By induction

To show amortized cost = $2 is enough,
 • we use $1 to pay for flipping some bit \(\times \) from 0 to 1, and store the excess $1
 • For other bits being flipped (from 1 to 0), each donates its corresponding $1

\(\Rightarrow \) Enough to pay for each increment
Binary Counter (Take 2)

Conclusion:
• Amortized cost of increment = 2

Meaning:
For n increments (with initial count = 0)
\[\text{total actual cost} \leq 2n \]

Question: What’s wrong if initial count $\neq 0$?
Accounting Method (Remarks)

• In contrast to the aggregate method, the accounting method may assign different amortized costs to different operations.

• Another thing: To help the analysis, we usually link each excess $ to a specific object in the data structure (such as an item in a stack, or a bit in a binary counter) — called the credit stored in the object.