CS2351
Data Structures
Lecture 18:
Hashing II
About this lecture

- The Hashing Problem
- Hash with Chaining
- Hash with Open Addressing

- Choosing a good Hash Function
 ** Universal Hash Function
Hash Function for Chaining
What is a good hash function?

• A good hash function should satisfy the simple uniform hashing assumption:

 1. Each element of U is equally likely to be mapped into any of the m entries
 2. Also, it is independent of where any other element is mapped to

• However, it is difficult to check, as we often don’t know the key distribution
What is a good hash function?

- Sometimes we do know ...

Ex: Suppose keys are random real numbers drawn independently and uniformly from [0,1)

⇒ The hash function

\[h(k) = \lfloor km \rfloor \]

satisfies the simple uniform hashing
What is a good hash function?

• In practice, we use heuristics to create hash functions
 • May not satisfy simple uniform hashing, but performs well

• A general idea is to avoid the hash value to be dependent on the patterns that might exist in the key
The Division Method

- In division method we map key k into one of the m slots by:
 \[h(k) = k \mod m \]

 \text{Ex: if } m = 12, k = 100 \implies h(k) = 4 \]

- Should avoid $m = \text{power of 2}$ (why?)

- A prime not close to power of 2 is usually a good choice

 \text{Ex: } n = 2000, \text{ we may choose } m = 701
The Multiplication Method

• In multiplication method we compute the hash value in 3 steps
 1. Fix a constant \(A \) from \((0,1)\)
 2. Multiply the key \(k \) with \(A \) and take the fractional part
 3. Multiply the fractional part with \(m \), and take the floor of the result

• In summary: \(h(k) = \lfloor m \{ kA \} \rfloor \)
 where \(\{ x \} \) denote the fractional part of \(x \)
The Multiplication Method

• Unlike the division method, we don’t need to avoid certain values of m here.

• In fact, we often set m to be a power of 2 (say $m = 2^p$) \(\Rightarrow\) easier computation.

Ex: Suppose the word size of our computer is w bits.
If we further restrict A to be a real of the form $s/2^w$ for some integer s, then ...
The Multiplication Method

Ex (cont):

Then to compute the desired hash value, we can:

1. Obtain $k \times s$ as a $2w$-bit integer
2. Retain the last w bits of $k \times s$
3. Retain the first p bits of the result of part 2

• In C: \[h = (k \times s) >> (w - p); \]
Remark

• Knuth suggests
 \[A = \left(\sqrt{5} - 1 \right)/2 = 0.6180339887\ldots \]
 is likely to work well

• Thus when \(w = 32 \), we try to choose
 \[s = 2654435769 \]
 which is the integer closest to \(A \times 2^{32} \)
Remark

• Most hash functions assume the universe of keys to be integers
• If keys are not integers, we may convert them to integers
• Ex: Given a string \(pt \), we may look at it as a radix-128 integer
 \[pt_{(128)} = 112 \times 128 + 116 = 14452 \]
• We shall assume all keys are integers
Hash Function for Open Addressing
What is a good hash function?

• In open addressing, our focus is to create hash function of the form $h(k, j)$ such that the values $h(k, 0), h(k, 1), \ldots, h(k, m-1)$ form a permutation of $[0, m-1]$

• We are going to describe three common techniques for creating such functions
 • Unfortunately, they don’t satisfy the uniform hashing assumption …
Linear Probing

• In linear probing we need an auxiliary hash function
 \[h' : U \rightarrow \{ 0, 1, \ldots, m-1 \} \]

• Based on \(h' \), the desired hash function is simply:
 \[h(k, j) = (h'(k) + j) \mod m \]

• Any disadvantage of this scheme?
Quadratic Probing

- In quadratic probing we also need an auxiliary hash function
 \[h' : U \rightarrow \{ 0, 1, \ldots, m-1 \} \]
- Based on \(h' \), the desired hash function is:
 \[h(k, j) = (h'(k) + aj + bj^2) \mod m \]
 for some fixed \(a \) and \(b \)
- We need to choose \(a \) and \(b \) carefully otherwise cannot get a permutation
Double Hashing

• In double hashing we need two auxiliary hash functions h_1 and h_2 where

 $h_1 : U \rightarrow \{ 0, 1, ..., m-1 \}$

• The desired hash function is:

 $h(k, j) = (h_1(k) + j \cdot h_2(k)) \mod m$

• We need $h_2(k)$ to be relatively prime to m

 • Method 1: $m = 2$ power, $h_2(k) = \text{odd}$

 • Method 2: $m = \text{prime}$, $0 < h_2(k) < m$
Double Hashing

Ex (Method 1):
\[m = 65536 \]
\[h_2(k) = (2 \times k) + 1 \]

Ex (Method 2):
\[m = 701 \]
\[h_2(k) = 1 + (k \mod 700) \]