CS 5319
Advanced Discrete Structure

Permutations and Combinations I
Outline

• Notation
• Rules of Sum and Product
• Permutations
• Combinations
• Distribution of Objects
* Stirling’s Formula
Notation

• Selection and arrangement of objects appear in many places
 ➔ we often want to compute # of ways to select or arrange the objects

• Ex:
 1. How many ways to select 2 people from 5 candidates?
 2. How many ways to arrange 5 books on the bookshelf?
Notation

• In most textbooks, we use the word combination \Leftrightarrow selection

Definition: An r-combination of n objects is an unordered selection of r of these objects

• Ex: \{c, d\} is a 2-combination of the 5 objects \{a, b, c, d, e\}
Notation

• In most textbooks, we use the word permutation ⇔ arrangement

Definition: An \(r \)-permutation of \(n \) objects is an ordered arrangement of \(r \) of these objects

• Ex: \(cbade \) is a \(5 \)-permutation of the 5 objects \{ a, b, c, d, e \}
Notation

• Further, we use the following notation:

The notation $C(n,r)$ denotes the number of r-combination of n distinct objects

The notation $P(n,r)$ denotes the number of r-permutation of n distinct objects

• What are the values of $C(n,n)$, $C(n,1)$, $C(3,2)$, and $P(3,2)$?
Rules of Sum and Product

• Suppose we have

 5 Roman letters A, B, C, D, E

 and 3 Greek letters α, β, γ

• How many ways to select two letters, one from each group?

• How many ways to select one letter that is either a Roman or a Greek letter?
Rules of Sum and Product

• In general, if
 one event can occur in m ways and
 another event can occur in n ways,

Rule of Product: There are $m \times n$ ways that these two events can occur together

Rule of Sum: There are $m + n$ ways that one of these two events can occur
Rules of Sum and Product

Ex: Suppose there are

5 Chinese books, 7 English books, and
10 French books

- How many ways to choose 2 books of different languages from them?

- Ans: $5 \times 7 + 5 \times 10 + 7 \times 10 = 155$
Rules of Sum and Product

Ex:

Why are the following formulas correct?

1. $P(n,r) = P(r,r) \times C(n,r)$
2. $P(n,n) = P(n,r) \times P(n-r,n-r)$
3. $C(n,r) = C(n-1,r-1) + C(n-1,r)$
Permutations
Permutations

• We can show that

\[P(n,r) = n \times (n-1) \times \ldots \times (n-r+1) \]
\[= \frac{n!}{(n-r)!} \]

Proof: \(P(n,r) = \# \) ways to get \(r \) of \(n \) objects in some order.

There are \(n \) ways to get the first object, \(n-1 \) ways to get the second object, ... , \(n-r+1 \) ways to get the last object.

\(\rightarrow \) Result follows from rule of product.
Permutations

Ex: How many ways can n people stand to form a ring?

The above are considered to be the same (as relative order is the same)
Permutations

- Suppose we have n objects which are not all distinct, where

 q_1 objects are of the first kind,

 q_2 objects are of the second kind,

 ...

 q_t objects are of the tth kind.

\Rightarrow # of n-permutation of these objects is:

$$\frac{n!}{q_1! \cdot q_2! \cdot \ldots \cdot q_t!}$$
Permutations

Ex:
Suppose we have 5 dashes and 8 dots

⇒ $13! / (5!8!)$ ways to arrange them

• If we can only use 7 symbols from them, how many different arrangements?

Ans: $7! / (5!2!) + 7! / (4!3!) + 7! / (3!4!) + 7! / (2!5!) + 7! / (1!6!) + 7! / 7! = 120$
Permutations

Ex: How to show that

$$(k!)! \text{ is divisible by } k! \cdot (k-1)! ?$$

- Consider the permutation of $k!$ objects, where
 - k are of the first kind,
 - k are of the second kind,
 - …
 - k are of the $(k-1)!$ th kind.
Permutations

• Suppose we have \(n \) distinct objects, each with unlimited supply

• The # of ways to arrange \(r \) objects from them is:

\[
\binom{n}{r}
\]

\(n^r \)
Permutations

Ex: Consider the numbers between 1 and \(10^{10}\).

• How many of them contain the digit 1?
• How many of them do not?

Ans: \(9^{10} - 1\) of them do not, the others do.
Permutations

Ex: Consider all n-digit binary strings.

• How many contain even number of 0’s?

 Ans: Half of them (by symmetry)

Ex: Consider all n-digit quaternary strings.

• How many contain even number of 0’s?

 Ans: $2^n + (4^n - 2^n) / 2$ (how to get this?)
Combinations
Combinations

• Recall that

\[P(n,r) = P(r,r) \times C(n,r) \]

Thus we have:

\[
C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!}{(n-r)! r!}
\]

• Immediately, we also have

\[C(n,r) = C(n,n-r) \]
Combinations

Ex: Consider a decagon (10-sided) where no three diagonals meet at a point.

• How many line segments are the diagonals divided by their intersections?

In case of a pentagon, there will be 15 line segments
Combinations

Ex:

Five pirates have discovered a treasure box. They decide to keep that in a locked room so that all the locks can be opened if and only if 3 or more pirates are present.

• How can they do so? How many locks needed? (Each pirate can possess keys to different locks)
Combinations

Ex:

In how many ways can we select three numbers from 1, 2, …, 300 such that their sum is divisible by 3?

– When the sum of three numbers is divisible by 3, what special property do they have?

• Ans: $C(100,3) + C(100,3) + C(100,3) + 100^3$
Combinations

• Suppose we have \(n \) distinct kinds of objects, each with unlimited supply
• The # of ways to select \(r \) objects from them is:

\[
C(n+r-1, \ r)
\]

• How to prove it ?
Combinations

Ex:

When three indistinguishable dice are thrown, how many outcomes are there?

- Ans: $C(6+3-1,3) = 56$
Combinations

Ex:

Out of a number of $100, $200, $500, $1000 bills, how many ways can six bills be selected?

• Ans: \(C(4+6-1, 6) = 84 \)
Combinations

• Suppose we have \(n \) objects which are not all distinct, where

\[
q_1 \text{ objects are of the first kind,}
\]
\[
q_2 \text{ objects are of the second kind,}
\]
\[
\ldots
\]
\[
q_t \text{ objects are of the } t \text{ th kind.}
\]

\[\Rightarrow \text{ number of ways to select one or more of these objects from them is:}\]
\[
(q_1+1)(q_2+1) \ldots (q_t+1) - 1
\]
Combinations

Ex:

How many divisors does 1400 have?

• Ans:

Since $1400 = 2^3 \times 5^2 \times 7$, the number of divisors of 1400 is

$(3+1) \times (2+1)(1+1) = 24$
Combinations

Ex:

For \(n \) given weights, what is the greatest number of different amounts that can be made up by the combinations of these weights?

To weigh things with integral weight between 1 and 100, how many weights do we need?
Combinations

Ex:

What is the greatest number of different amounts that can be weighed using n weights and a balance?

To weigh things with integral weight between 1 and 100, how many weights do we need?