1. Show that single-tape TMs that cannot write on the portion of the tape containing the input string recognize only regular languages.

Answer: Let \(M = (Q, \Sigma, \Gamma, q_0, q_{\text{accept}}, q_{\text{reject}}) \) be a single-tape TM that cannot write on the input portion of the tape. A typical case when \(M \) works on an input string \(x \) is as follows: the tape head will stay in the input portion for some time, and then enter the non-input portion (i.e., the portion of the tape on the right of the \(|x|^\text{th} \) cells) and stay there for some time, then go back to the input portion, and stay there for some time, and then enter the non-input portion, and so on. We call the event that the tape head switches from input portion to non-input portion an *out* event, and the event that the tape head switches from non-input portion to input portion an *in* event.

Let \(\text{first}_x \) denote the state that \(M \) is in just after its first “out” event (i.e., the state of \(M \) when it first enters the non-input portion). In case \(M \) never enters the non-input portion, we assign \(\text{first}_x = q_{\text{accept}} \) if \(M \) accepts \(x \), and assign \(\text{first}_x = q_{\text{reject}} \) if \(M \) does not accept \(x \).

Next, we define a characteristic function \(f_x \) such that for any \(q \in Q \), \(f_x(q) = q' \) implies that if \(M \) is at state \(q \) and about to perform an “in” event, the next “out” event will change \(M \) in state \(q' \); in case \(M \) never enters the non-input portion again, we assign \(f_x(q) = q_{\text{accept}} \) if \(M \) enters the accept state inside the input portion, and \(q_{\text{reject}} \) otherwise.

It is easy to check that if for two strings \(x \) and \(y \), if \(\text{first}_x = \text{first}_y \) and for all \(q \), \(f_x(q) = f_y(q) \), we have \(x \) and \(y \) are indistinguishable by \(M \). (That is, \(M \) accepts \(xz \) if and only if \(M \) accepts \(yz \).) As there are finite choices of \(\text{first}_x \) and \(f_x \) (precisely, \(|Q|^{Q+1} \) such choices), the number of distinguishable strings are finite. By Myhill-Nerode theorem, the language recognized by \(M \) is regular.

2. Let \(A \) be a Turing-recognizable language consisting of descriptions of Turing machines, \(\{\langle M_1 \rangle, \langle M_2 \rangle, \ldots \} \), where every \(M_i \) is a decider. Prove that some decidable language \(D \) is not decided by any decider \(M_i \) whose description appears in \(A \).† (Hint: You may find it helpful to consider an enumerator for \(A \), and re-visit the diagonalization technique.)

Answer: Since \(A \) is Turing-recognizable, there exists an enumerator \(E \) that enumerates it. In particular, we let \(\langle M_i \rangle \) be the \(i \)-th output of \(E \) (note: \(\langle M_i \rangle \) may not be distinct).

Let \(s_1, s_2, s_3 \ldots \) be the list of all possible strings in \(\{0, 1\}^* \). Now, we define a TM \(D \) as follows:

\[
D = \text{"On input } w:\n\begin{align*}
1. & \text{ If } w \notin \{0, 1\}^*, \text{ reject.} \\
2. & \text{ Else, } w \text{ is equal to } s_i \text{ for a specific } i. \\
3. & \text{ Use } E \text{ to enumerate } \langle M_1 \rangle, \langle M_2 \rangle, \ldots \text{ until } \langle M_i \rangle. \\
4. & \text{ Run } M_i \text{ on input } w. \\
5. & \text{ If } M_i \text{ accepts, reject. Otherwise, accept."}
\]

†The question seems strange at the first glance. In fact, it is asking you to prove that the language consisting of all descriptions of Turing deciders is not Turing-recognizable.
Clearly, D is a decider (why??). However, D is different from any M_i (why??), so that $\langle D \rangle$ is not in A.

3. Let $E = \{ \langle M \rangle \mid M$ is a DFA that accepts some string with more 1s than 0s $\}$. Show that E is decidable. (Hint: Theorems about CFLs are helpful here.)

Answer: Let $A = \{ x \mid x$ has more 1s than 0s $\}$. The language A is context-free, as we can easily construct a PDA to recognize A. Now, we construct the TM M below to decide E as follows:

$M =$ “On input $\langle M \rangle$ where M is a DFA:

1. Construct $B = A \cap L(M)$. Note that B is CFL, since $L(M)$ is regular and A is CFL.
2. Test whether B is empty.
3. If yes, reject. Otherwise, accept.

4. Let C be a language. Prove that C is Turing-recognizable if and only if a decidable language D exists such that $C = \{ x \mid \exists y (\langle x, y \rangle \in D) \}$.

Answer: If D exists, we can construct a TM M such that we search each possible string y, and testing whether $\langle x, y \rangle \in D$. If such y exists, accept. Such a machine M will accept any string in C in finite steps, so C is Turing-recognizable.

If C is recognized by some TM M, we define $D = \{ \langle x, y \rangle \mid M$ accepts x within $|y|$ steps $\}$. Clearly, D is decidable. Also, $x \in C$ if and only if there exists y such that $\langle x, y \rangle \in D$. Thus, $C = \{ x \mid \exists y (\langle x, y \rangle \in D) \}$.

5. (Bonus Question) Show that the problem of determining whether a CFG generates all string in 1^* is decidable. In other words, show that $\{ \langle G \rangle \mid G$ is a CFG over $\{0,1\}$ and $1^* \subseteq L(G) \}$ is a decidable language.

Answer: Please discussed the solution with Yu-Han directly.