CS4311
Design and Analysis of Algorithms

Lecture 6: Sorting in Linear Time
About this lecture

• Sorting algorithms we studied so far
 - Insertion, Selection, Merge, Quicksort
 ➔ determine sorted order by comparison

• We will look at 3 new sorting algorithms
 - Counting Sort, Radix Sort, Bucket Sort
 ➔ assume some properties on the input, and
determine the sorted order by distribution
Helping the Billionaire

- Your boss, Bill, is a billionaire
- Inside his BIG wallet, there are a lot of bills, say, n bills
- Nine kinds of bills:
 - $1, $5, $10, $20, $50, $100, $200, $500, $1000
Helping the Billionaire

• He did not care about the ordering of the bills before
• But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only $500 notes today ... Do I have enough in the wallet?
A Proposal

• Create a bin for each kind of bill
• Look at his bill one by one, and place the bill in the corresponding bin
• Finally, collect bills in each bin, starting from $1-bin, $5-bin, ..., to $1000-bin
A Proposal

• In the previous algorithm, there is no comparison between the items ...
 • But we can still sort correctly... WHY?

• Each step looks at the value of an item, and **distribute** the item to the correct bin
 • So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before ➔ sorted
Sorting by Distribution

• Previous algorithm sorts the bills based on distribution operations

• It works because:
 • we have information about the values of the input items \(\rightarrow\) we can create bins

• We will look at more algorithms which are based on the same distribution idea
Counting Sort
Counting Sort

• Input: Array \(A[1..n] \) of \(n \) integers, each has value from \([0,k] \)

• Output: Sorted array of the \(n \) integers

• Idea 1: Create \(B[1..n] \) to store the output

• Idea 2: Process \(A[1..n] \) from right to left
 • Use \(k + 2 \) counters:
 • One for “which element to process”
 • \(k + 1 \) for “where to place”
Counting Sort (Details)

Before Running

A
k+1 counters

2 1 2 5 3 3 1 2

next element

B

\[c[0], c[1], c[2], c[3], c[4], c[5] \]
Counting Sort (Details)

Step 1: Set $c[j] =$ location in B for placing the next element if it has value j

A

2 1 2 5 3 3 1 2

B

c[0] = 0
c[1] = 2
c[2] = 5
c[3] = 7
c[4] = 8
c[5] = 8
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

c[0] = 0
c[1] = 2
c[2] = 4
c[3] = 7
c[4] = 8
c[5] = 8

B
Counting Sort (Details)

Step 2: Process next element of \(A \) and update corresponding counter

\[
\begin{align*}
A & \quad 2 \quad 1 \quad 2 \quad 5 \quad 3 \quad 3 \quad 1 \quad 2 \\
B & \quad 1 \quad 2 \\
\end{align*}
\]

\[
\begin{align*}
c[0] &= 0 \\
c[1] &= 1 \\
c[2] &= 4 \\
c[3] &= 7 \\
c[4] &= 8 \\
c[5] &= 8 \\
\end{align*}
\]
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter.

A

| 2 | 1 | 2 | 5 | 3 | 3 | 1 | 2 |

next element

B

| 1 | 2 | 3 |
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

\[
\begin{array}{cccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

next element

\[
c[2] = 4 \\
c[5] = 8
\]

B

\[
\begin{array}{cccc}
1 & 2 & 3 & 3 \\
\end{array}
\]

\[
c[0] = 0 \\
c[1] = 1 \\
c[3] = 5 \\
c[4] = 8
\]
Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

```
2 1 2 5 3 3 1 2
```

next element

B
Step 2: Process next element of A and update corresponding counter

A

\[
\begin{array}{ccccccc}
2 & 1 & 2 & 5 & 3 & 3 & 1 & 2 \\
\end{array}
\]

next element

B

\[
\begin{array}{ccccccc}
1 & 2 & 2 & 3 & 3 & 5 \\
\end{array}
\]

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

2 1 2 5 3 3 1 2

next element

B

1 1 2 2 3 3 5

Counting Sort (Details)

Step 2: Done when all elements of A are processed

A

next element

B

c[0] = 0
c[1] = 0
c[2] = 3
c[3] = 5
c[4] = 8
c[5] = 7

1 1 2 2 2 3 3 5

2 1 2 5 3 3 1 2
Counting Sort (Step 1)

How can we perform Step 1 smartly?

1. Initialize $c[0], c[1], \ldots, c[k]$ to 0

2. /* First, set $c[j] = \# \text{ elements with value } j$ */
 For $x = 1, 2, \ldots, n$, increase $c[A[x]]$ by 1

3. /* Set $c[j] = \text{ location in } B \text{ to place next element whose value is } j$ (iteratively) */
 For $y = 1, 2, \ldots, k$, $c[y] = c[y-1] + c[y]$

Time for Step 1 = $O(n + k)$
Counting Sort (Step 2)

How can we perform Step 2?

/* Process A from right to left */
For x = n, n-1, ..., 2, 1
{
 /* Process next element */
 B[c[A[x]]] = A[x];
 /* Update counter */
 Decrease c[A[x]] by 1;
}

Time for Step 2 = \(\mathcal{O}(n) \)
Counting Sort (Running Time)

Conclusion:

• **Running time** = $O(n + k)$

 \Rightarrow if $k = O(n)$, time is (asymptotically) optimal

• **Counting sort is also stable**:

 • elements with same value appear in **same order** in before and after sorting
Stable Sort

Before Sorting

2 1 2 5 3 3 1 2
△ O ♦

After Sorting

1 1 2 2 2 3 3 5
△ O ♦
Radix Sort
Radix Sort

• Input: Array $A[1..n]$ of n integers, each has d digits, and each digit has value from $[0,k]$

• Output: Sorted array of the n integers
• Idea: Sort in d rounds
 • At Round j, stable sort A on digit j (where rightmost digit = digit 1)
Radix Sort (Example Run)

Before Running

1 9 0 4
2 5 7 9
1 8 7 4
6 3 5 5
4 4 3 2
8 3 1 8
1 3 0 4

4 digits
Radix Sort (Example Run)

Round 1: Stable sort digit 1

\[
\begin{array}{cccc}
1904 & 4432 \\
2579 & 1904 \\
1874 & 1874 \\
6355 & 1304 \\
4432 & 6355 \\
8318 & 8318 \\
1304 & 2579 \\
\end{array}
\]
Radix Sort (Example Run)

Round 2: Stable sort digit 2

After Round 2, last 2 digits are sorted (why?)
Radix Sort (Example Run)

Round 3: Stable sort digit 3

<table>
<thead>
<tr>
<th>1904</th>
<th>1304</th>
<th>1304</th>
<th>8318</th>
</tr>
</thead>
<tbody>
<tr>
<td>8318</td>
<td>6355</td>
<td>4432</td>
<td>4432</td>
</tr>
<tr>
<td>4432</td>
<td>2579</td>
<td>1874</td>
<td>1874</td>
</tr>
<tr>
<td>6355</td>
<td>2579</td>
<td>1904</td>
<td></td>
</tr>
</tbody>
</table>

After Round 3, last 3 digits are sorted (why?)
Radix Sort (Example Run)

Round 4: Stable sort digit 4

After Round 4, last 4 digits are sorted (why?)
Radix Sort (Example Run)

Done when all digits are processed

1 3 0 4
1 8 7 4
1 9 0 4
2 5 7 9
4 4 3 2
6 3 5 5
8 3 1 8

The array is sorted (why?)
Radix Sort (Correctness)

Question:
“After r rounds, last r digits are sorted”
Why ??

Answer:
This can be proved by induction:
The statement is true for $r = 1$
Assume the statement is true for $r = k$
Then ...
Radix Sort (Correctness)

At Round $k+1$,

- if two numbers differ in digit “$k+1$“, their relative order [based on last $k+1$ digits] will be correct after sorting digit “$k+1$"
- if two numbers match in digit “$k+1$“, their relative order [based on last $k+1$ digits] will be correct after stable sorting digit “$k+1$” (why?)

\Rightarrow Last “$k+1$“ digits sorted after Round “$k+1$“
Radix Sort (Summary)

Conclusion:
• After d rounds, last d digits are sorted, so that the numbers in $A[1..n]$ are sorted
• There are d rounds of stable sort, each can be done in $O(n + k)$ time
 ➔ Running time = $O(d(n + k))$
• if $d=O(1)$ and $k=O(n)$, asymptotically optimal
Bucket Sort
Bucket Sort

• Input: Array $A[1..n]$ of n elements, each is drawn uniformly at random from the interval $[0,1)$

• Output: Sorted array of the n elements

• Idea:
 Distribute elements into n buckets, so that each bucket is likely to have fewer elements \Rightarrow easier to sort
Bucket Sort (Details)

Before Running

0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68

Step 1: Create \(n \) buckets

\(n = \#\text{buckets} = \#\text{elements} \)

\([0,0.1)\) \hspace{1cm} \([0.1,0.2)\) \hspace{1cm} \([0.2,0.3)\) \hspace{1cm} \([0.3,0.4)\) \hspace{1cm} \([0.4,0.5)\)

\([0.5,0.6)\) \hspace{1cm} \([0.6,0.7)\) \hspace{1cm} \([0.7,0.8)\) \hspace{1cm} \([0.8,0.9)\) \hspace{1cm} \([0.9,1)\)

Each bucket represents a subinterval of size \(1/n \)
Bucket Sort (Details)

Step 2: Distribute each element to correct bucket

If Bucket j represents subinterval $[j/n, (j+1)/n)$, element with value x should be in Bucket $[xn]$.
Bucket Sort (Details)

Step 3: Sort each bucket (by insertion sort)
Bucket Sort (Details)

Step 4: Collect elements from Bucket 0 to Bucket n-1

Sorted Output
0.12, 0.17, 0.21, 0.23, 0.26, 0.39, 0.68, 0.72, 0.78, 0.94
Bucket Sort (Running Time)

• Let $X = \#$ comparisons in all insertion sort

 \[
 \text{Running time} = \Theta(n + X)
 \]

 \[\rightarrow \text{ worst-case running time } = \Theta(n^2)\]

• How about average running time?

Finding average of X (i.e. \#comparisons) gives average running time
Average Running Time

Let $n_j = \# \text{ elements in Bucket } j$

$$X \leq c(n_0^2 + n_1^2 + \ldots + n_{n-1}^2)$$

So,

$$E[X] \leq E[c(n_0^2 + n_1^2 + \ldots + n_{n-1}^2)]$$

$$= c \ E[n_0^2 + n_1^2 + \ldots + n_{n-1}^2]$$

$$= c \ (E[n_0^2] + E[n_1^2] + \ldots + E[n_{n-1}^2])$$

$$= cn \ E[n_0^2] \quad \text{(by symmetry)}$$
Average Running Time

Textbook (pages 175-176) shows that
\[E[n_0^2] = 2 - \frac{1}{n} \]
\[\Rightarrow E[X] \leq c n E[n_0^2] = 2cn - c \]

In other words, \(E[X] = \Theta(n) \)

\[\Rightarrow \text{Average running time} = \Theta(n) \]
For Interested Classmates

The following is how we can show

$$E[n_0^2] = 2 - \frac{1}{n}$$

Recall that $n_0 = \#\text{ elements in Bucket 0}$

So, suppose we set

$$Y_k = 1 \text{ if element } k \text{ is in Bucket 0}$$
$$Y_k = 0 \text{ if element } k \text{ not in Bucket 0}$$

Then, $n_0 = Y_1 + Y_2 + \ldots + Y_n$
For Interested Classmates

Then,

\[
E[n_0^2] = E[(Y_1 + Y_2 + \ldots + Y_n)^2]
\]

\[
= E[Y_1^2 + Y_2^2 + \ldots + Y_n^2 + Y_1 Y_2 + Y_1 Y_3 + \ldots + Y_1 Y_n + Y_2 Y_1 + Y_2 Y_3 + \ldots + Y_2 Y_n + \ldots + Y_n Y_1 + Y_n Y_2 + \ldots + Y_n Y_{n-1}]
\]
\[= \mathbb{E}[Y_1^2] + \mathbb{E}[Y_2^2] + \ldots + \mathbb{E}[Y_n^2] + \mathbb{E}[Y_1 Y_2] + \ldots + \mathbb{E}[Y_n Y_{n-1}] \]

\[= n \mathbb{E}[Y_1^2] + n(n-1) \mathbb{E}[Y_1 Y_2] \]

(by symmetry)

The value of \(Y_1^2\) is either 1 (when \(Y_1 = 1\)), or 0 (when \(Y_1 = 0\))

The first case happens with \(1/n\) chance (when element 1 is in Bucket 0), so

\[\mathbb{E}[Y_1^2] = \frac{1}{n} \times 1 + (1- \frac{1}{n}) \times 0 = \frac{1}{n}\]
For Y_1Y_2, it is either 1 (when $Y_1=1$ and $Y_2=1$), or 0 (otherwise)

The first case happens with $\frac{1}{n^2}$ chance (when both element 1 and element 2 are in Bucket 0), so

$$E[Y_1Y_2] = \frac{1}{n^2} * 1 + (1 - \frac{1}{n^2}) * 0 = \frac{1}{n^2}$$

Thus, $E[n_0^2] = n E[Y_1^2] + n(n-1) E[Y_1Y_2]$

$$= n \left(\frac{1}{n} \right) + n(n-1) \left(\frac{1}{n^2} \right)$$

$$= 2 - \frac{1}{n}$$