CS4311
Design and Analysis of Algorithms

Lecture 22:
Elementary Graph Algorithms I
About this lecture

• Representation of Graph
 • Adjacency List, Adjacency Matrix

• Breadth First Search
Graph

undirected
directed
Adjacency List (1)

- For each vertex u, store its neighbors in a linked list
Adjacency List (2)

- For each vertex \(u \), store its neighbors in a linked list
Adjacency List (3)

• Let $G = (V, E)$ be an input graph
• Using Adjacency List representation:
 • Space: $O(|V| + |E|)$
 ➔ Excellent when $|E|$ is small
 • Easy to list all neighbors of a vertex
 • Takes $O(|V|)$ time to check if a vertex u is a neighbor of a vertex v
• can also represent weighted graph
Adjacency Matrix (1)

- Use a $|V| \times |V|$ matrix A such that

 $A(u,v) = 1$ if (u,v) is an edge

 $A(u,v) = 0$ otherwise

$$
\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 & 5 \\
 \hline
 1 & 0 & 1 & 0 & 0 & 1 \\
 2 & 1 & 0 & 1 & 0 & 0 \\
 3 & 0 & 1 & 0 & 1 & 1 \\
 4 & 0 & 0 & 1 & 0 & 1 \\
 5 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
$$
Adjacency Matrix (2)

- Use a $|V| \times |V|$ matrix A such that:

 $A(u,v) = 1$ if (u,v) is an edge

 $A(u,v) = 0$ otherwise

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Matrix (3)

• Let $G = (V, E)$ be an input graph

• Using Adjacency Matrix representation:
 • Space: $O(|V|^2)$
 ➔ Bad when $|E|$ is small
 • $O(1)$ time to check if a vertex u is a neighbor of a vertex v
 • $\Theta(|V|)$ time to list all neighbors

• can also represent weighted graph
Transpose of a Matrix

• Let A be an $n \times m$ matrix

Definition:

The transpose of A, denoted by A^T, is an $m \times n$ matrix such that

$$A^T(u,v) = A(v,u) \quad \text{for every } u, v$$

† If A is an adjacency matrix of an undirected graph, then $A = A^T$
Breadth First Search (BFS)

• A simple algorithm to find all vertices reachable from a particular vertex \(s \)
 • \(s \) is called source vertex

• Idea: Explore vertices in rounds
 • At Round \(k \), visit all vertices whose shortest distance (\#edges) from \(s \) is \(k-1 \)
 • Also, discover all vertices whose shortest distance from \(s \) is \(k \)
The BFS Algorithm

1. Mark s as discovered in Round 0
2. For Round $k = 1, 2, 3, ...,$
 For (each u discovered in Round $k-1$)
 {
 Mark u as visited;
 Visit each neighbor v of u;
 If (v not visited and not discovered)
 Mark v as discovered in Round k;
 }

Stop if no vertices were discovered in Round $k-1$
Example \((s = \text{source})\)

- **Visited** \((? = \text{discover time})\)
- **Discovered** \((? = \text{discover time})\)
- Direction of edge when new node is discovered
Example ($s = \text{source}$)

- **visited**: r, s, t, u (\uparrow = discover time)
- **discovered**: v, w, x, y (\uparrow = discover time)
- **direction of edge when new node is discovered**
Example ($s = \text{source}$)

- Visited node: visited ($? = \text{discover time} $)
- Discovered node: discovered ($? = \text{discover time} $)
- Direction of edge when new node is discovered:

$$
\begin{align*}
\text{r} & \quad \text{s} & \quad \text{t} & \quad \text{u} \\
1 & \quad 0 & \quad 2 & \quad 3 \\
2 & \quad 1 & \quad 1 & \quad 3 \\
\text{v} & \quad \text{w} & \quad \text{x} & \quad \text{y} \\
\end{align*}
$$
Example \((s = \text{source})\)

The directed edges form a tree that contains all nodes reachable from \(s\)

Called \textbf{BFS tree of} \(s\)

Done when no new node is discovered
Correctness

• The correctness of BFS follows from the following theorem:

Theorem: A vertex v is discovered in Round k if and only if shortest distance of v from source s is k

Proof: By induction
Performance

• BFS algorithm is easily done if we use
 • an $O(|V|)$-size array to store discovered/visited information
 • a separate list for each round to store the vertices discovered in that round
• Since no vertex is discovered twice, and each edge is visited at most twice (why?)
 ➔ Total time: $O(|V|+|E|)$
 ➔ Total space: $O(|V|+|E|)$
Performance (2)

- Instead of using a separate list for each round, we can use a common queue
 - When a vertex is discovered, we put it at the end of the queue
 - To pick a vertex to visit in Step 2, we pick the one at the front of the queue
 - Done when no vertex is in the queue

⇒ No improvement in time/space ...
⇒ But algorithm is simplified

Question: Can you prove the correctness of using queue?