About this lecture

- Data Structure for Disjoint Sets
 - Support Union and Find operations

- Various Methods:
 1. Linked List
 2. Union by Size (this lecture)
 3. Union by Rank
 4. Union by Rank + Path Compression
Disjoint-Set Forest

- Another popular method to maintain disjoint sets is by a **forest**
 - Each set \Leftrightarrow a separate rooted tree
 - Representative \Leftrightarrow root of tree
- Unlike the linked lists implementation, each element now points only to its **parent** (and does not directly point to the representative)
Current dynamic sets: \[
\{a,b,c,d\}, \{e,f,g\}, \{h\}\]
Disjoint-Set Forest

- To perform $\text{Union}(x,y)$, we join the trees containing x and containing y, by linking their roots
- E.g. $\text{Union}(f,h)$ in previous example gives:
Disjoint-Set Forest

• Let $H_{\text{max}} = \text{max height of all trees}$
• In the worst-case:

 Make-Set: $\Theta(1)$ time

 Find or Union: $O(H_{\text{max}})$ time

\Rightarrow m operations on n elements:

 worst-case $\Theta(mn)$ time
Union By Size

• Let us apply a union-by-size heuristic:

To perform Union, we link root of the smaller tree to root of the larger tree

\[H_{\text{max}} = O(\log n) \]
(how to prove??)

\[m \text{ operations : } \Theta(m \log n) \text{ time} \]
Union By Rank

• A similar heuristic is called union-by-rank
• Each node keeps track of its rank – an upper bound on the height of the node
 • In a single-node tree (created by Make-Set) rank of root = 0

To perform Union, we link root with smaller rank to root with larger rank
Union By Rank

- Rank needs **not** be very accurate
 - as long as it always gives an upper bound of height is enough

- When Union is performed, only the rank of the roots may change:
 - If both roots have same rank
 - rank of new root increases by 1
 - Else, no change
Example

Before Union

After Union(c, f)

? = rank
Union By Rank

- Let $H_{\text{max}} = \text{max height of all trees}$

 $\Rightarrow H_{\text{max}} = O(\log n)$ \hspace{1cm} \text{(how to prove??)}

 $\Rightarrow m \text{ operations : } \Theta(m \log n) \text{ time}$

- So, union by rank is no better than union by size, but ...
Path Compression

• The closer a node to its root, the faster the Find or Union operation.

• When we perform Find(x), we will need to find the root of the tree containing x.
 ➔ will access every ancestor of x.

• why don’t we make all these ancestors of x closer to the root now?
 (Because no increase in asymptotic performance !!!)
Example

Before Find(x)

After Find(x)
Union by Rank + Path Compression

- If $\text{Union}(x,y)$ is always performed by first $\text{Find}(x)$, $\text{Find}(y)$, and then linking the roots, then by combining union-by-rank (at Union) and path compression (at Find and Union):

 m operations: $\Theta(m \alpha(n))$ time

 Inverse Ackermann (in practice, at most 4)
Finding Connected Components

• Recall: To find connected components of a graph G with n vertices and m edges
 • there are n Make-Set and m Find or Union operations

• Which scheme for dynamic disjoint sets gives the best running time (theoretically)?
 Ans. Depends on m (why?)